
NASA-GB-001-96

Software
Program

Software Management Guidebook

November 1996

NATIONAL AERONAUTICS AND
SPACE ADMINISTRATION

WASHINGTON, DC

Software
Program

Software Management Guidebook

November 1996

NATIONAL AERONAUTICS AND
SPACE ADMINISTRATION

WASHINGTON, DC

NASA-GB-00 1-96

CSC 10034618

..
11

Foreword

This document is a product of the National Aeronautics and Space Administration (NASA)
Software Program, an Agency-wide program to promote continual improvement of software
engineering within NASA. The goals and strategies for this program are documented in the
NASA Software Strategic Plan, July 13, 1995.

Additional information is available from the NASA Software IV&V facility on the World Wide
Web site http: Ilwww. ivv.nasa. govl.

...
111 NASA-GB-00 1-96

Table of Contents

Page
... Foreword .. 111

1 . Introduction .. 1
1.1 Background .. 1
1.2 Purpose ... 1
1.3 Scope .. 2
1.4 Overview .. 2 . . 1.4.1 Organization ... 2

1.4.2 Terminology ... 2
1.4.3 Notation .. 2

2 . Software Engineering Process Requirements and Infrastructure ... 5
2.1 General Requirements .. 5
2.2 Specific Required Activities and Products .. 6

2.2.1 Management Activities .. 8
2.2.2 Technical Activities ... 8
2.2.3 Software Process Improvement Activities ... 8
2.2.4 System-Level Considerations ... 8

2.3 Software Process Responsibilities ... 10
2.3.1 Level 1: NASA Headquarters, IV&V Facility, and Software Working Group 11
2.3.2 Level 2: Center and Intra-Center Elements .. 12
2.3.3 Level 3: Branches and Software Projects ... 12

2.4 Process Assets .. 13

3 . The Software Project’s Process .. 15
3.1 The Five-Step Project Process ... 15
3.2 Documenting the Project’s Process-The Software Plan .. 17

4 . Beginning to Plan the Project: Understanding the Scope of Work .. 21
4.1 Ascertaining Customer Requirements and Constraints ... 21

4.3 Understanding Management’s Risk Tolerance .. 23
4.4 Understanding Products to be Delivered and Their Characteristics 23

4.4.2 Software Product Releases ... 23

5 . Defining the Technical Approach .. 25
5.1 Selecting an Appropriate Life-Cycle Model .. 26

4.2 Ascertaining Customer Goals and Objectives ... 22

4.4.1 Documentation ... 23

4.4.3 Milestone Reviews ... 24

V NASA-GB-00 1-96

5.1.1 Waterfall Development Life-Cycle Model ... 28
5.1.2 Incremental Development Life-Cycle Model ... 30
5.1.3 Evolutionary Development Life-Cycle Model ... 32
5.1.4 Package-Based Development Life-Cycle Model ... 34
5.1.5 Legacy System Maintenance Life-Cycle Model .. 36

5.2 Selecting Appropriate Activities, Methods, and Products ... 38
5.2.1 Software CI Requirements Definition and Analysis .. 40

5.2.3 Software CI Implementation and Testing .. 47
5.2.2 Software CI Design .. 45

5.2.4 Software CI Qualification Testing ... 53
5.2.5 Preparing for Software Delivery .. 54
5.2.6 Software Product Validation and Verification ... 56
5.2.7 Software Configuration Management .. 64
5.2.8 Software Quality Assurance ... 67
5.2.9 Milestone Reviews ... 68

6 . Finishing the Software Plan-Defining the Management Approach .. 75
6.1 Establishing the Software Project’s Organizational Structure ... 76

6.3 Planning Other Activities ... 80
6.4 Reviewing the Software Plan ... 83

7.1 Managing the Project ... 86
7.1.1 Preparing the Software Team ... 86
7.1.2 Monitoring and Controlling the Project ... 87
7.1.3 Communicating with Stakeholders .. 88
7.1.4 Maintaining the Software Plan ... 90
7.1.5 Keeping Project Records .. 91

7.2 Closing Out the Project .. 92

6.2 Estimating and Scheduling the Work .. 77
. . .

7 . Running the Project .. 85

Appendix A . Glossary .. 95
Appendix B . Building for Reuse .. 101
Appendix C . COTS, GOTS, Reused, and Other NDI Software Products 103

C . 1 COTS Software Products .. 103
C.2 Evaluating COTS, GOTS, Reused, and Other NDI Software Products 105
C.3 Guidelines for Performing Required Activities Involving COTS, GOTS, Reused, and

Other NDI Software Products ... 106

Appendix D . System-Level Considerations ... 109
D . 1 System Requirements Analysis ... 109
D.2 System Design ... 109
D.3 Software CI and Hardware CI Integration and Testing ... 110
D.4 System Qualification Testing .. 110

NASA-GB-00 1-96 vi

. . Abbreviations and Acronyms ... 1 13
References .. 1 15

.. vii NASA-GB-00 1-96

Fig u res

Page

Figure 2.1 . Required Software Process Activities .. 6

Figure 2-2 . System Life Cycle ... 9
Figure 2-3 . Software Development Context .. 10
Figure 2 4 . Software Maintenance or Enhancement Context ... 10

Figure 3-1 . The Five-Step Project Process .. 16

Figure 3-2 . Planning the Software Project .. 18

Figure 5-1 . Phases and Activities .. 26
Figure 5-2 . Waterfall Development Life-Cycle Model ... 29

Figure 5-3 . Incremental Development Life-Cycle Model ... 31
Figure 5 4 . Evolutionary Development Life-Cycle Model ... 33

Figure 5-5 . Package-Based Development Life-Cycle Model .. 35
Figure 5-6 . Legacy System Maintenance Life-Cycle Model ... 36
Figure 5-7 . Primary Software Engineering Activities ... 39

Figure 5-8 . Software Engineering Support Activities ... 39
Figure 6-1 . Typical Software Project Organization ... 76

Figure 7-1 . Running the Project .. 85
Figure 7-2 . Product Handovers ... 89
Figure B-1 . High-Reuse Life-Cycle Model ... 102

Figure 3-3 . Tailoring the Project’s Software Process .. 20

NASA-GB-00 1-96 ...
Vll l

Page

Table 1.1 . Use of Icons ... 3
Table 2.1 . Required Activities, Products, and Roles .. 7
Table 2-2 . Sampling of Software Products at Each Organizational Level 11
Table 3-1 . Mapping the Five-Step Project Process to This Guidebook .. 15

Table 4-1 . Sample Project Objectives ... 22
Table 5-1 . Defining a Life Cycle ... 27

Table 5-2 . Summary of Waterfall Development Life-Cycle Model .. 28

Table 5-3 . Products and Milestone Reviews for the Waterfall Development Life-Cycle
Model .. 29

Table 5 4 . Summary of Incremental Development Life-Cycle Model .. 30

Model .. 31
Table 5-6 . Summary of Evolutionary Development Life-Cycle Model .. 32

Table 5-5 . Products and Milestone Reviews for the Incremental Development Life-Cycle

Table 5-7 . Products and Milestone Reviews for the Evolutionary Development Life-Cycle
Model .. 33

Table 5-8 . Summary of Package-Based Development Life-Cycle Model 34

Cycle Model ... 35
Table 5-1 0 . Summary of Legacy System Maintenance Life-Cycle Model 36

Table 5-9 . Major Products and Milestone Reviews for the Package-Based Development Life-

Table 5-1 1 . Products and Milestone Reviews for the Legacy System Maintenance Life-Cycle
Model .. 37

Table 5-1 2 . Structured Requirements Analysis Method ... 41
Table 5-1 3 . Object-Oriented Requirements Analysis Method .. 42

Table 5-1 5 . JAD Workshop Technique ... 44
Table 5-1 6 . Structured Design Method ... 46
Table 5-1 7 . Object-Oriented Design Method .. 46
Table 5-18 . Top-Down Method .. 51

Table 5-1 9 . Bottom-Up Method .. 51

Table 5-2 1 . Software Product V&V Summary ... 57

Table 5-14 . Prototyping Technique ... 43

Table 5-20 . Functional Path Method ... 52

ix NASA-GB-00 1-96

Table 5.22 . Inspection Method ... 5 8

Table 5-23 . Walkthrough Method ... 58
Table 5-24 . Document Review Method .. 59
Table 5-25 . Demonstration Method .. 59

Table 5.26 . Functional Testing Method .. 60
Table 5-27 . Structural or Coverage Testing Method ... 61
Table 5-28 . Statistical Testing Method ... 61
Table 5-29 . Regression Testing Method ... 62
Table 5-30 . Testing Methods vs . Testing Levels .. 62

Table 5-3 1 . The Cleanroom Method ... 63
Table 5-32 . Candidate Milestone Reviews ... 70
Table 5-33 . Meetings ... 71
Table 5-34 . Presentations .. 71
Table 5-3 5 . Demonstrations .. 72

Table 6-2 . Mini-Waterfall ... 78

Table 6-3 . Timeboxes .. 79
Table 6 4 . Required Activities and Related Measures .. 81
Table 6-5 . Process Studies .. 82
Table 7-1 . Recommended Status Reports and Meetings ... 88
Table C-1 . Guidelines for Using COTS, GOTS, Reused, and Other NDI Software Products 107

Table 6-1 . Three Levels of Estimates and Plans ... 77

NASA-GB-00 1-96 X

1 Introduction

1 .I Background

he objective of every National Aeronautics and Space Administration (NASA) software
engineering project is to provide, to the customer, a software product that is engineered to T satisfj the customer’s requirements, within determined cost, schedule, and quality

guidelines.

The term software engineering encompasses new development, modification, reuse, re-
engineering, maintenance, and all other activities resulting in software products. Throughout
NASA, organizations engineer software products that cover a wide spectrum of characteristics
(Reference 1):

Application domains include flight and embedded software, mission ground support
software, general support software, science analysis software, research software, and
administrative and Information Resources Management (IRM) software.
Target operating environments encompass PC-based, mainframe-based, workstation-
based, and clientherver-based solutions.
Product sizes range from only a few thousand lines of code to more than a million.
Cost and cycle-time requirements vary.
Desired end-product qualitieereusability, commercialization, and consequences of
software failure (from minor inconvenience to loss of a mission or loss of life)-also
vary.

One significant lesson learned from many years of software engineering throughout NASA is that
no single solution can solve every problem. No one life-cycle model, analysis and design method,
testing method, product evaluation method, or degree of formality for documents and reviews is
appropriate for all NASA software projects. To accommodate these variations, each project must
tailor its software process to acknowledge customer requirements and constraints; goals and
objectives for cost, cycle time, and product qualities; and management’s tolerance for risk. Such
tailoring is the responsibility of the project’s software manager.

1.2 Purpose

The purpose of this NASA Software Management Guidebook is twofold. First, this document
defines the core products and activities required of NASA software projects. It defines life-cycle
models and activity-related methods but acknowledges that no single life-cycle model is
appropriate for all NASA software projects. It also acknowledges that the appropriate method for
accomplishing a required activity depends on characteristics of the software project.

Second, this guidebook provides specific guidance to software project managers and team leaders
in selecting appropriate life cycles and methods to develop a tailored plan for a software
engineering project.

1 NASA-GB-00 1-96

1.3 Scope

This handbook addresses the engineering of software products, where those products either
(1) comprise a software system for which this handbook governs the overall engineering effort or
(2) are part of a hardware-software system for which this handbook governs only the software
portion.

System engineering management issues are outside of the scope of this guidebook. Section 2.2.4
places the software life cycle in the context of the system life cycle, and Appendix Appendix D.
discusses the system-level considerations required of the software manager and team members.

This book also does not cover acquisition of software products; it covers development and
maintenance.

1.4 Overview

1.4.1 Organization

Chapter 2 of this guidebook summarizes the common elements of the overall NASA software
engineering process. Chapters 3 through 6 describe the NASA software engineering process in
somewhat more detail, including summary descriptions of required activities and products, and
recommended methods for performing those activities. Chapter 7 discusses running and then
closing out software projects.

Appendix Appendix A. is a glossary of software engineering terms that every software project
manager should understand. Appendix Appendix B. provides guidance for building software
components with reusability in mind. Appendix Appendix C. provides more detailed guidance
for incorporating non-developed items (NDIs) into software products. Appendix Appendix D.
lists additional considerations when the software under development is only part of a larger
system.

1.4.2 Terminology

Several terms have specific meanings in this document. These terms are used consistently to
emphasize and ensure understanding of the flexibility built into the software process common
requirements. Please refer to the glossary in Appendix Appendix A. for definitions and
discussion of the following key sets of terms:

Development, maintenance, enhancement

Documentation, record

Life-cycle models, phases, activities, methods
Software configuration items (CIS), systems

1.4.3 Notation

Table 1-1 explains the use of icons in this guidebook.

NASA-GB-00 1-96 2

Table 1-1. Use of Icons

J

A double exclamation mark highlights related tips that have
been shown effective on NASA programs.

A check mark highlights required software engineering
activities.

QB<
A pair of scissors highlights software process tailoring
information; that is, methods and techniques proven to be
effective on NASA programs and recommended for use in
performing a particular activity.

3 NASA-GB-00 1-96

2. Software Engineering Process Requirements and
I nfrastructu re

his chapter summarizes the common aspects of the overall NASA software engineering
process. The first two sections discuss key activities and products that are expected of T NASA software projects. The third section discusses the roles and responsibilities of

personnel at various organizational levels. The final section introduces the concept of a process
asset library (PAL).

2.1 General Requirements

Every software project must meet a number of general requirements in carrying out the detailed
required activities, for example

The software team uses systematic, documented methods for all software engineering
activities. These methods are described or referenced in the project’s software plan.
The software team applies standards for representing requirements; design; code; test
plans, procedures, and results; and other software products. These standards are
described or referenced in the software plan.
During the course of the project, the software team identifies and evaluates NDIs,
including commercial-off-the-shelf (COTS), government-off-the-shelf (GOTS), and
reusable software products, as well as software products not created by project
personnel (for example, by other NASA or contractor personnel), for use in fulfilling
the project requirements. The scope of the search and the criteria to be used for
evaluation are as described in the software plan. Software products that meet the
criteria are used where practical. Incorporated software products must meet applicable
data rights and licensing requirements. Appendix Appendix C. discusses an approach
for developing systems that comprise predominantly NDI components.
During the course of the project, the software team identifies opportunities for
developing software products for reuse and evaluates the benefits and costs of these
opportunities. Opportunities that provide cost benefits and are compatible with the
customer’s objectives are identified to the customer. The software requirements might
also state that the software team develop software products specifically for reuse.
The software team identifies critical software CIS (or portions thereof) and develops
and implements a strategy that addresses the following critical issues:

System resource utilization: critical system resource capacities or constraints are
imposed on the final product
Safety: failure of the software could lead to a hazardous state
Security: failure could lead to a breach of system security
Privacy: failure could lead to a breach of system privacy
Other critical characteristics

5 NASA-GB-00 1-96

The software team develops an appropriate strategy for such software, including tests
and analyses, to ensure that the requirements, design, implementation, and operating
procedures for the identified software minimize or eliminate the potential for
hazardous or compromising conditions. The software team records the strategy in the
software plan, implements the strategy, and produces evidence, as part of required
software records, that the defined strategy has been carried out successfully.
The software team records rationale that will be useful to the software operations and
maintenance (O&M) organization for key decisions made in specifying, designing,
implementing, and testing the software. The rationale includes trade-offs considered,
analysis methods, and other criteria used to make the decisions. The rationale is
recorded in documents, code comments, or other media that are transferable to the
software O&M organization.

<
%
U
-. 7

2.2 Specific Required Activities and Products

Independently assure software products and activities (SQA)

Manage configuration (SCM)

The software manager establishes a project software engineering process that is based on the
NASA software process and consistent with the software requirements. The NASA software
process comprises three categories of activities:

1 . Management
2. Technical
3. Software process improvement

Figure 2-1 illustrates the relationships among the activities; Table 2-1 summarizes the activities
and the primary products generated as a result of performing each activity.

-. m
T
2. m

Monitor and control software project
(maintain project software plan

and records as necessary)

Participate in milestone reviews

Validate and verib (V&V) software products

01 Prepare software team I

::

4 s
o_
3

cn
%

Iu

Perform required technical activities
(i.e., software CI requirements definition and

analysis through qualification testing,
including interim deliveries)

until final product is delivered

I ime

Figure 2-1. Required Software Process Activities

NASA-GB-00 1-96 6

Table 2-1. Required Activities, Products, and Roles

Activity
Software project

planning

Software CI
requirements
definition and
analvsis

Software CI design

Software CI
implementation
and testing

Software CI
qualification testing

Preparation for
software delivery

Software project
close-out

Software product
validation and
verification (V&V)

configuration
management

Software quality
assurance

Software

Milestone reviews

Software team
preparation

Project monitoring
and controlling

Software process
improvement

System-level
considerations

Primary Products
Software plan
Project planning review

Software CI requirements specification
V&V records for requirements definition and analysis products
Software requirements milestone review

Software CI design specification
V&V records for design products
Software design milestone review
Unit-level design
Implementation test plans, procedures
Implemented, integrated, tested software
V&V records for implementation and testing products
Qualification test readiness milestone review
Qualification test plan, procedures
Qualification tested software
V&V records for qualification testing products
Executable software
Software source files
Version description
As-built software description
Software user's guide
Software project history
Software project lessons learned and recommendations for
improvement
Software Droiect close-out data
Software product V&V records

Software configuration management plan (part of the software
Plan)
Controlled software products
Software configuration management records
Software quality assurance plan (part of the software plan)
Software quality assurance records
Milestone reviews

Training records

Management indicators
Project status reviews
Software technology study plans and study results
Defect causal analysis recommendations
System and operations concept, operational scenarios
System requirements specification
System design specification
Hardware and software CI integration and test plan,
procedures
System qualification test plan, procedures
Qualification tested system
V&V records for qualification testing products

Key Roles
Software manager
Software team leader
Software QA representative
Software requirements analyst
Software QA representative

Software design architect
Software detail designer
Software QA representative
Software implementer
Software unit tester
Software integrator and tester
Software QA representative

Software qualification tester
Software QA representative

Software configuration

Rest of software team
Software QA representative

manager

Software manager
Software QA representative

Software team
Software QA representative

Software configuration

Rest of software team
Software QA representative
Software QA representative

manager

Software manager
Rest of software team
Software QA representative
Software manager
Rest of software team
Software QA rewesentative
Software manager
Software QA representative
Entire software team
Software QA representative
Entire software team
Software QA representative

7 NASA-GB-00 1-96

2.2.1 Management Activities

The following are required management-related activities:
Software project planning
Software team preparation

Software project close-out
Software project monitoring and control

2.2.2 Technical Activities

The following are required technical activities, each of which produces one or more specific
software products. They may overlap, may be applied iteratively, may be applied differently to
different elements of software, and are not necessarily performed in the order listed. (Remember
that activities are not synonymous with phases. Refer to the Glossary (Appendix Appendix A.)
for definitions and discussion regarding activities versus phases.)

Software CI design

Software CI qualification testing
Preparation for software delivery

Software CI requirements definition and analysis

Software CI implementation and testing

The following are required support activities that are performed in conjunction with each of the
above technical activities:

Milestone reviews
Software configuration management (SCM)
Software quality assurance (SQA)

Software product validation and verification (V&V)

2.2.3 Software Process Improvement Activities

Every software project presents an opportunity to study and improve the software process. One
mechanism used in the NASA software process improvement program is to study the application
of new technologies.' Process studies are conducted any time an unproven life-cycle or activity-
related method is selected by the software manager. The NASA Software Process Improvement
Guidebook (Reference 2) describes the approach NASA uses to study and understand the effects
of new technologies on software products and processes.

2.2.4 System -Level Considerations

Figure 2-2 illustrates the concept of a system life cycle. This section clarifies some terms related
to the system life cycle.

A "new" technology is one that has not been proven to be effective in practice in a particular NASA application 1

area or domain. It may have been proven effective elsewhere, however.

NASA-GB-00 1-96 8

DEVELOP SYSTEM
WITH INITIAL

OPERATIONAL

Figure 2-2. System Life Cycle

In this guidebook, the term system refers to the operational entity that the organization is
responsible for developing, maintaining, or enhancing. That is, if the organization is responsible
for developing several software and hardware CIS and is responsible for integrating them into an
operational entity, then the collection of those CIS is the system. If, however, the organization is
responsible for developing a single software CI, which may be integrated into (for example) a
ground support system by a different NASA organization, then the software CI itself is the
system referred to in this guidebook.

Some of the systems that NASA organizations develop, or maintain and enhance, include
multiple CIS. There may be a mix of software CIS and hardware CIS, or the system may be only
hardware or only software. This guidebook discusses the activities associated with the
development and with the maintenance and enhancement of the software CI elements of a
system, but also includes very high-level summaries of the relevant system-level activities to help
the reader understand the context in which the software effort may take place. When the system
comprises only software CIS, then most of the system- and CI-level products are one and the
same.

Development (see Figure 2-3) is the creation and installation of an operational system that meets
an initially defined set of system requirements. Once the system is operational, subsequent
changes are considered maintenance or enhancement (see Figure 2 4) . Many of the maintenance
and enhancement activities are the same or similar to those used in development. The NASA
software process applies equally to development and to maintenance and enhancement efforts.
(The figures reflect the software emphasis of this guidebook.)

9 NASA-GB-00 1-96

REUSABLE OR REUSABLE OR

Figure 2-3. Software Development Context Figure 2-4. Software Maintenance or
Enhancement Context

When the software being engineered is a part of a larger system, additional system-level
considerations may need to be taken into account. Appendix Appendix D. addresses those
considerations.

2.3 Software Process Responsibilities

The subsections that follow summarize the basic responsibilities for maintaining and using the
NASA software process at the various organizational levels. Table 2-2 provides examples of
software process-related products at each level.

NASA-GB-00 1-96 10

Table 2-2. Sampling of Software Products at Each Organizational Level

Level

1
Headquarters,
IV&V Facility, and
Software Working Group

2
Center and
Intra-Center Elements
(Directorates, Divisions)

3
Branches and
Software Projects

Products

NASA Software Strategic Plan
This Software Management Guidebook
Other agency-wide software engineering
(management, development, and assurance)
guidebooks, plans, policies, and standards
Domain guidance
Independent in-progress assessments of high-
profile development projects’ activities and
products
Software ena i neeri na train i na
Software quality assurance plan (to include SQA
procedures), which is referenced by the software
plan and is administered by a center-level
software quality assurance organization that is
independent of the individual projects
Approach for reviewing and approving projects’
software plans
Approach for developing and approving lower
level standards. Drocedures. and Dlans
Software engineering (management and
development) standards and processes
Software plan
PAL and other related software assets
Project-related software training
Software products resulting from applying the
process defined bv the plan

2.3.1 Level 1 : NASA Headquarters, IV&V Facility, and Software Working Group

The NASA Software Strategic Plan (Reference 3) , completed in July 1995, complements the
Agency-wide strategic vision and mission statements while focusing on software within NASA.
This plan was developed by the NASA Software Working Group (SWG) under the auspices of
the NASA Software Independent Validation and Verification (IV&V) Facility at Fairmont, West
Virginia, sponsored by the Office of Safety and Mission Assurance (OSMA) at Headquarters
(HQ). The goals and implementation strategies of the NASA Software Strategic Plan address
(1) defining and improving software engineering processes (including processes for management,
development, and quality assurance), (2) transferring software product and process technologies,
and (3) maintaining a core competency in software. Those three elements comprise the NASA
Software Program.

The NASA Software Working Group is the implementation vehicle for the NASA Software
Program. The role of the SWG is as follows:

Define, refme, and implement the goals of the NASA Software Strategic Plan
Provide guidance to all NASA software-related activities

11 NASA-GB-00 1-96

Ensure that available software processes are disseminated

The SWG has one or two representatives from each center and is chaired by a member of the
IV&V Facility.

A 1993 survey of NASA Centers (Reference 1) found that NASA does not have a common set of
software standards that is used across the Agency in the manner of the Department of Defense’s
military standard (Reference 4). One focus of the NASA SWG is to produce guidebooks and
supporting training on the basis of NASA-wide experience in key areas such as project
management, assurance, risk management, and software process improvement (see Section 2.4
for examples).

2.3.2 Level 2: Center and Intra-Center Elements

For the most part, individual centers have given directorates, divisions, and offices the
responsibility for developing their own standards and common processes. According to the 1993
survey (Reference l), two NASA centers (the Marshall Space Flight Center (MSFC) and the Jet
Propulsion Laboratory (JPL)) have written software development standards that are baselined at
the center level and include a formal waiver process. The other centers have software standards
and processes implemented at a lower organizational level. Center-level activities typically focus
on defining approaches for plan review and approval. For critical mission systems, however, the
SQA organization at each center has the responsibility to ensure that, throughout the life cycle of
the project, software engineering activities are performed and software products are prepared in
accordance with the software project’s software plan.

2.3.3 Level 3: Branches and Software Projects

Branch managers and software project managers share responsibility for developing and
approving lower level standards, procedures, and plans for implementing the software process in
their areas. They are responsible for the following:

Identifjing, developing, and maintaining those lower level standards, procedures, and
plans that are unique to a particular development effort and those that are common to
families of software products
Providing training for their development efforts
Establishing and maintaining local PALS that contain locally specific process assets

Lower level software engineering process functions define, develop, and implement needed
software process assets that are not provided in a higher level NASA PAL. They are also
responsible for defining, developing, and implementing a software process improvement
program that supports the needs of the projects and branches and for providing software-related
information required by higher level measurement and process improvement programs.

Each project must plan its own specific approach for accomplishing the software work assigned
to it. The approach must be documented in a software plan and must comply with the local and
higher level process requirements.

NASA-GB-00 1-96 12

2.4 Process Assets

The software team uses process assets from an experience-based PAL. A PAL is a compilation of
NASA estimating and planning models, historical data, life-cycle models, activity definitions,
product standards and templates, and examples of good practices that are available to a software
project for developing, maintaining, and implementing its defined process. A PAL may be
implemented at any and all organizational levels, as appropriate, within a NASA organization
responsible for systems development.

An organization’s PAL typically contains the following products:
Higher level NASA process assets
All of the local organization’s software process definition documents
Software-related guidebooks, handbooks, and white papers, as they become available
Recommended activity and method definitions and product standards applied within
the organization
Training material related to the organization’s software process
Plans and results from software process studies
Other assets that the organization determines to be applicable

This Software Management Guidebook and other NASA headquarters-level software-related
products (for example, the NASA Software Measurement Guidebook (Reference 5) and the
NASA Software Process Improvement Guidebook (Reference 2)) are included in every NASA
PAL. Every PAL must also include copies of NASA Management Instruction @MI) 2410.1OB
and other software-related NMIs.

NASA’s Software Management Guidebook is a primary source of guidance to the manager in
preparing the project’s software plan (see Section 3.2) and selecting appropriate elements from
the PAL:

Life-cycle models (for example, waterfall, iterative refinement, spiral)
Milestone reviews (for example, requirements reviews, design reviews)
Products and product formats (for example, degree of formality, packaging)
Engineering methods (for example, structured approach, object-oriented approach, the
Cleanroom method)
Product V&V methods (for example, peer review methods, testing methods)
Product control methods (for example, degree of formality)

Using these assets, each software manager prepares a project-specific software plan that defines
the selected life-cycle model, methods, tools, and product standards the software team will use.
Managers may also use their organizations’ PALS (of varying degrees of formality and structure)
as sources of more detailed software process assets that have been tailored for specific
application domains. This common tailoring approach allows each software project to draw on
proven, successful methods appropriate to satisfy their customers’ needs in a predictable,
efficient, and cost-effective manner.

13 NASA-GB-00 1-96

3. The Software Project’s Process

Project
Process Step

STEP 1

his chapter summarizes the software project’s process, which includes required activities
from developing a software plan that meets the unique needs of each customer through T delivery of the final software product and close-out of the project. This chapter also

briefly discusses the project software plan, which documents the project’s process.

Handbook Section

Chapter 4: Beginning to Plan the Project: Understanding the Scope of Work

3.1 The Five-Step Project Process

STEP 2

STEP 3

Figure 3-1 is a summary of the five key steps required to take a software engineering project
from inception through final delivery and close-out. Subsequent chapters of this guidebook
expand on each of the steps. Table 3-1 maps the five steps to the applicable section of this
guidebook

Chapter 5: Defining the Technical Approach

Chapter 6: Finishing the Software Plan-Defining the Management Approach

Table 3-1. Mapping the Five-Step Project Process to This Guidebook

STEP 4

STEP 5

Section 7.1 : Managing the Project

Section 7.2: Closing Out the Project

15 NASA-GB-00 1-96

NASA-GB-00 1-96

Figure 3-1. The Five-Step Project Process

16

3.2 Documenting the Project’s Process-The Software Plan
Activity Requirements

17 NASA-GB-00 1-96

Monitor and control software project
(maintain project software plan

and records as necessary)

Prepare software team

I ime

Figure 3-2. Planning the Software Project

Every software project has its own software process. The project’s software plan documents the
process and provides a disciplined approach to organizing and managing a software project. The
existence of a plan does not guarantee project success; the key to successful software
management is generating and maintaining a realistic, usable plan and then following it.
Following the plan involves not only maintaining the plan itself, but also performing activities to
measure progress and performance against the plan. Use the plan to assist in recognizing danger
signals, and take early and appropriate actions to solve problems.

This guidebook does not mandate a specific format for a software plan; however, every PAL
should include good examples of software management plans and a reusable template for such a
plan. An excellent example of such a template is the Reusable Software Management Plan
developed by the Software Assurance Technology Center at the Goddard Space Flight Center
(GSFC) (Reference 6). It includes an on-line help tool for tailoring the text to an individual
software project. Another excellent example is provided in the NASA Software Engineering
Laboratory’s Manager ’s Handbook for Software Development (Reference 7). Depending on the
specific development environment, items may be arranged differently or new material may be
added. In nearly all cases, a project’s software plan will be contained in more than one physical
document, because many of the plan’s components will be common to multiple projects (for
example, a QA or CM plan). However, the project’s software plan must contain references to all
required topics that are packaged separately.

By completing the initial plan early in the life cycle, the manager becomes familiar with the
essential aspects of the specific software engineering effort:

Scope and requirements of the project
Overall schedule and milestones
Staff requirements

NASA-GB-00 1-96 18

Each manager defines the project’s technical approach, driven by the customer’s requirements,
constraints, goals, and objectives; management’s risk tolerance level; and the target and
development or maintenance environments. The technical approach is described in the software
plan and should concentrate on information unique to, or tailored for, a specific project. Simply
reference applicable documents that contain standard policies, guidelines, standards, and
procedures to be applied; do not restate that information in detail. Begin to write the plan as soon
as information about the project’s definition and scope is available. The plan should be available
within the first 30 to 60 days of the project, except for information that will not be available until
later in the life cycle (indicate who will supply any missing information and when it will be
provided). Distribute copies of the plan to all levels of project management, to the client, and to
the software team.

The following additional points are included here for completeness and to ensure common
understanding. While developing the plan and running the project

Incorporate lessons learned from other similar or related software projects. Read
software project history reports from those projects.
Use sound judgment. One significant lesson learned from performing software
engineering on NASA projects is that no single life-cycle model, analysis and design
method, testing method, degree of formality of documents and reviews, etc. is
appropriate for every NASA software project. Use of sound, professional judgment is
expected with respect to decisions related to such topics.
You can always do more. This guidebook defines the minimum required software
activities and products, not the precise set of things to do. If a manager or project
team feels that something additional would be useful, they are empowered to do so.
Remember that you are not alone in this planning effort; you are not the first nor will
you be the last to plan a new or different software project. Consult with other software
managers for their opinions, advice, and ideas.

Figure 3-3 illustrates the inputs to the process of preparing a tailored software plan:
The customer’s requirements and constraints as well as his or her goals and objectives
The risk tolerance levels of the project manager and of the project’s organizational
management
Reusable process assets from local and higher level PALS
The NASA Software Management Guidebook (this document)
The NASA Software Measurement Guidebook (Reference 5)
The NASA Software Process Improvement Guidebook (Reference 2)

19 NASA-GB-00 1-96

Figure 3-3. Tailoring the Project’s Software Process

Software Measurement Guidebook presents information on the purpose and importance
of measurement for

1. Understanding and modeling the software engineering process
2. Aiding in the management of software projects
3 . Guiding improvement in software engineering processes

It discusses the specific procedures and activities of an organizational measurement program and
the roles of the people involved. The guidebook also clarifies the role that measurement can and
must play in the goal of continual, sustained improvement for all software production and
maintenance efforts.

The Software Process Improvement Guidebook is a companion document that describes how a
software project uses a new technology (that is, one that has not yet been proven anywhere within
the organization) in a controlled fashion and quantitatively assesses the effect of the technology
on the products generated and the process used.

NASA-GB-00 1-96 20

4. Beginning to Plan the Project: Understanding the
Scope of Work

his chapter describes activities that are required to begin planning the project. Software
project planning need not wait, indeed must not wait, for receipt of the final software T requirements to begin the project planning process. It should begin as soon as project

personnel become aware of the intent of the customer to initiate a new software effort, and it
should be coordinated, as much as possible, with other NASA groups responsible for related
requirements.

Activity Requirements

The rest of this chapter provides guidance in accomplishing this required activity.

4.1 Ascertaining Customer Requirements and Constraints

Ascertain the customer’s requirements and constraints from the software requirements
specifications, discussions with the customer, and any other appropriate means. The customer
may have only a general idea of the software requirements; determination of detailed
requirements may follow later or may even be part of the project. (The same applies to
characteristics of products to be delivered.)

NASA experience has been that the more the end user of the software product is involved
throughout the product’s engineering life cycle, the more likely the expected product will result.
The customer, however, is not always the end user of the software product. When this is the case,
work with the customer to encourage that the end user be as involved throughout as much of the
product’s life cycle as possible. This involvement is particularly crucial during the requirements
analysis and design activities early in the life cycle. It is also important to try to get end-user
involvement at milestone reviews.

21 NASA-GB-00 1-96

4.2 Ascertaining Customer Goals and Objectives

During meetings with the customer, ascertain the customer’s organizational goals and specific
project objectives regarding overall cost, schedule, and product qualities. Also understand the
goals of higher levels of the organization. The software manager and customer use the goals to
determine and agree on the appropriate robustness desired of product, formality and level of
detail and polish in documents, milestone review presentations, and so on. The software manager
defines, in the project’s software plan, the specific approach that best addresses the application
domain, the objectives established for the project, and the size of the effort. Table 4-1 provides
examples of the types of objectives that might be established for a project.

Objective

cost

Table 4-1. Sample Project Objectives

Examples

Minimize cost to develop
Minimize cost to maintain

Schedule

Product
Qua I it ies

Deliver by fixed date (for example, 90 days before
launch)
Maximize reusability
Maximize robustness
Maximize freedom from defects
Maximize performance (for example, response
time)

I I 0 Maximize maintainability or extensibility

NASA-GB-00 1-96 22

4.3 Understanding Management’s Risk Tolerance

To minimize costs or cycle time, it is sometimes necessary to introduce risk. Understand what
level of risk tolerance is acceptable to the management of both the development or maintenance
organization and the customer’s organization, and include a risk management approach in the
software plan that accommodates that level of risk. (See Section 6.3.)

An approach for continuous risk management is explained in detail in the Software Engineering
Institute’s (SEI’S) technical report Continuous Risk Management Guidebook (Reference S) ,
recently adopted by the NASA Software Program for use throughout the Agency.

4.4 Understanding Products to be Delivered and Their Characteristics

Reach agreement with the customer regarding the products to be delivered and the goals for each
product with respect to its cost, schedule, and qualities. Remember that initially the customer
may have only a general idea of the product requirements; determination of specific products
may follow later or may even be part of the project.

4.4.1 Documentation

The amount of time and effort expended in producing a document can vary considerably. (Refer
to the glossary for the definition of documentation.) Factors that affect document production
include the following:

General format
Level of detail
Degree of formality

Audience for the document-points of view and levels of experience of the readers

For deliverable documents, the following additional factors apply:
Paper vs. electronic delivery (if paper, the number of copies per delivery)
Number of interim deliverable versions

4.4.2 Software Product Releases

Use interim software releases (as opposed to the “big bang” approach) either to satisfj early
operational needs of the customer or as a risk mitigation technique (for example, to ensure the
feasibility of high-risk requirements). Integrating and testing the system in parts helps to localize

23 NASA-GB-00 1-96

erros and reduce debugging time. Early releases also help to build the customer’s confidence
level, as well as that of management, that the project is on track.

4.4.3 Milestone Reviews

Milestone reviews and associated review material should also be treated as deliverable products.
That is, discuss their goals with the customer in terms of responsibilities, cost, schedule, and
qualities. Many of the factors that affect producing documentation-oriented products also apply
to milestone reviews. (See Section 5.2.9 for details.)

NASA-GB-00 1-96 24

5. Defining the Technical Approach

hapter 4 described the first step in the planning process: understanding the scope of the
work to be performed. The next step is to define a technical approach that best
accomplishes the work, which is the subject of this chapter. It includes selecting an

Activity Requirements

C
appropriate life-cycle model along with corresponding activities, methods, and products.

Although the following descriptions of process requirements and tailoring guidelines are
extensive, a new project manager should not feel overly intimidated by the length of this chapter.
If your new project is similar to one that another project manager has managed previously, then
visit your PAL or seek out that manager and reuse the appropriate tailoring from the earlier
project. Complete the applicable additional process tailoring and you will be ready to estimate
and plan your project based on the specifics of your process. After you have defmed the technical
approach for your project, everything you need to know to complete the management approach
and then run the project is provided in the following two chapters, which are much shorter.

“Proven” means used successfully within NASA. 2

25 NASA-GB-00 1-96

5.1 Selecting an Appropriate Life-Cycle Model

This section identifies the life-cycle models recommended for use on NASA software projects. A
life-cycle model comprises one or more phases (for example, a requirements definition phase, a
design phase, a test phase). Each phase is defined as the time interval between two scheduled
events. For example, in the waterfall life-cycle model, the design phase is defined as the period
between the software specification review and the critical design review (CDR).

Within each phase, one or more activities are executed. For example, during the waterfall
model’s design phase, the design activity is performed; the test planning activity for qualification
testing may be done at the same time. In most cases, activities neither begin nor end precisely at
the phase boundaries; rather, they overlap adjacent phases, as illustrated in Figure 5-1.

Phases.

I-
IY

LL
W

2

Figure 5-1. Phases and Activities

Various methods (or techniques) may be used in the performance of an activity. For example,
object-oriented design is one proven design method; structured design is another.

This document does not mandate any particular software life-cycle model, and the order of
activities described here is not intended to conform to any particular model. Few specific
methods are mandated for required activities. These decisions are left to the software manager,
who selects an appropriate life-cycle model and activity-related methods and defines them in the

NASA-GB-00 1-96 26

project’s software plan. This chapter contains guidance on selecting an appropriate,
recommended life-cycle model and methods for many activities.

For convenience, Table 5-1 provides the definitions (see the Glossary) of several important terms
used extensively in this section.

Table 5-1. Defining a Life Cycle

Term

Software life cycle

Life-cycle model

Life-cycle phase

Activity

Method

Definition

“The period of time that begins when a software product is conceived and ends
when the software is no longer available for use” (Reference 9). A life cycle is
typically divided into life-cycle phases.

A framework on which to map activities, methods, standards, procedures, tools,
products, and services (for example, waterfall, spiral).

A division of the software effort into non-overlapping time periods. Life-cycle
phases are important reference points for the software manager. Multiple
activities may be performed in a life-cycle phase; an activity may span multiple
phases.

A unit of work that has well-defined entry and exit criteria. Activities can usually
be broken into discrete steps.

A technique or approach, possibly supported by procedures and standards, that
establishes a way of performing activities and arriving at a desired result.

Five life-cycle models are summarized in the following subsections. These models QB< are recommended on the basis of NASA’s experience applying them successfully at
various centers. Development is addressed before maintenance, and the
development life-cycle models are ordered from the simplest and most familiar to
what may be the most complex and least familiar.

Waterfall development life-cycle model
Incremental development life-cycle model
Evolutionary development life-cycle model
Package-based development life-cycle model
Legacy system maintenance life-cycle model

27 NASA-GB-00 1-96

5.1 .I Waterfall Development Life-Cycle Model

Table 5-2 summarizes the life cycle defmed by the waterfall development model.

Summay description
and discussion

The waterfall (single-build) life-cycle model is essentially a once-
through-do-each-step-once approach. Simplistically, determine user
needs, define requirements, design the system, implement the
system, test, fix, and deliver the system (Reference I O) .

This model is illustrated in Figure 5-2. Major products and milestone
reviews for this life-cvcle model are summarized in Table 5-3.

Advantages Well-studied, well-understood, and well-defined
Easy to model and understand

uct is not available for initial use until the project is nearly

The design and technology are proven and mature

NASA-GB-00 1-96 28

~ Requirements analysis
~

&
Architectural design

\
1

Detailed design

t
Implementation & testing

t
Qualification testing

1
Delivery

Figure 5-2. Waterfall Development Life-Cycle Model

Table 5-3. Products and Milestone Reviews for the Waterfall Development Life-Cycle Model

Lifecycle phase

Project planning
Requirements definition

Architectural design
and analysis

Detailed design

Implementation and
testing

Qualification testing

Major products

Software plan
Software requirements
specification (SWRS)
Software design specification
(SWDS), preliminary
Qualification test plan
Preliminarv user’s guide
Software design specification

Unit-level design
Implemented, tested software
Qualification test procedures
Draft user’s auide

(SWDS), detailed

Qualification-tested software
Qualification test report
Final user’s guide
As-built software description

Milestone reviews

None
Software Specification Review (SSR)

Preliminary Design Review (PDR)

Critical Design Review (CDR)

Qualification Test Readiness Review
(QTRR)

Acceptance Test Readiness Review
(ATRR)

29 NASA-GB-00 1-96

5.1.2 Incremental Development Life-Cycle Model

Table 5 4 summarizes the life cycle defined by the incremental development model.

Table 5-4. Summary of Incremental Development Life-Cycle Model

Summary description
and discussion

Advantages

Disadvantages

The incremental (multi-build) life-cycle model determines user needs
and defines a subset of the system requirements, then performs the
rest of the development in a sequence of builds. The first build
incorporates part of the planned capabilities, the next build adds
more capabilities, and so on, until the system is complete (Reference
I O) .

This model is illustrated in Figure 5-3. Major products and milestone
reviews for this life-cycle model are summarized in Table 5-5.

Reduces risks of schedule slips, requirements changes, and
acceptance problems
Increases manageability
Interim builds of the product facilitate feeding back changes in
subsequent builds
Interim builds may be delivered before the final version is done;
this allows end users to identify needed changes
Breaks up development for long lead time projects
Allows users to validate the product as it is developed
Allows software team to defer development of less well
understood requirements to later releases after issues have been
resolved
Allows for early operational training on interim versions of the
product
Allows for validation of operational procedures early
Includes well-defined checkpoints with customer and users via
reviews
Like the waterfall life-cycle model, most if not all requirements
must be known up front
Sensitive to how specific builds are selected
Places products (particularly requirements) under configuration
control early in the life cycle, thereby requiring formal change
control procedures that may increase overhead, particularly if
requirements are unstable
Project is similar to one done successfully before
Most of the requirements are stable and well-understood; but
some TBDs may exist
The design and technology are proven and mature
Total project duration is greater than one year or customer needs
interim release(s)

NASA-GB-00 1-96 30

Define or Derive
Software CI

Requirements 11 Design Software CI

Requirements
Analysis and

Design

I Release 1 I

Implement and Qualifica-
Test Software CI tion Test

Qualification I Test Implement and Test Software CI

Requirements
Analysis and

Design

I Release 2 I

Implement and
Test Software CI

a
a

a

Final Release

I - I I I

Figure 5-3. Incremental Development Life-Cycle Model

Table 5-5. Products and Milestone Reviews for the Incremental Development Life-Cycle Model

Lifecycle phase

Project planning
Requirements definition

Architectural design
and analysis

Detailed design

Implementation and
testing

Qualification testing

Major products

Software plan
Software requirements
specification (SWRS)
Software design specification
(SWDS), preliminary
Qualification test plan
Preliminarv user’s guide
Software design specification
(SWDS), detailed through at least
the first build

(SWDS), detailed through at least
the next build

Software design specification

-

Unit-level design
Implemented, tested software
Qualification test procedures
Draft user’s guide
Qualification-tested software
Qualification test report
Final user’s guide
As-built software descriDtion

Milestone reviews

None
Software Specification Review (SSR)

Preliminary Design Review (PDR)

Critical Design Review (CDR)

Build Design Review (BDR)

Qualification Test Readiness Review
(QTRR)

Acceptance Test Readiness Review
(ATRR)

31 NASA-GB-00 1-96

5.1.3 Evolutionary Development Life-Cycle Model

Table 5-6 summarizes the life cycle defined by the evolutionary development model.

Table 5-6. Summary of Evolutionary Development Life-Cycle Model

Summary description
and discussion

Advantages

Disadvantages

Like the incremental development model, the evolutionary life-cycle model
also develops a system in builds, but differs from the incremental model in
acknowledging that the user needs are not fully understood and not all
requirements can be defined up front. In the evolutionary approach, user
needs and system requirements are partially defined up front, then are
refined in each succeeding build. The system evolves as the
understanding of user needs and the resolution of issues occurs.
Prototyping is especially useful in this life-cycle model. (The evolutionary
development life-cycle model is sometimes referred to as a spiral
development model, but it is not the same as Boehm’s spiral model
(Reference 11). This model is also sometimes referred to as a prototyping
life-cycle model, but it should not be confused with the prototyping
technique defined in Section 5.2.1 .)

This life-cycle model is illustrated in Figure 5-4. Major products and
milestone reviews for this model are summarized in Table 5-7.

Not all requirements need be known up front
Addressing high risk issues (for example, new technologies or unclear
requirements) early may reduce risk
Like the incremental life-cycle model, interim builds of the product
facilitate feeding back changes in subsequent builds
Users are actively involved in definition and evaluation of the system
Prototyping techniques enable developers to demonstrate functionality
to users with minimal of effort
Even if time or money runs out, some amount of operational capability
is available
Because not all requirements are well-understood up front, the total
effort involved in the project is difficult to estimate early. Therefore,
expect accurate estimates only for the next cycle, not for the entire
development effort.
Less experience on how to manage (progress is difficult to measure)
Risk of never-ending evolution (for example, continual “gold plating”)
May be difficult to manage when cost ceilings or fixed delivery dates
are specified
Will not be successful without user involvement
Requirements or design are not well-defined, not well-understood, or
likely to undergo significant changes
New or unproved technologies are being introduced
System capabilities can be demonstrated for evaluation by users
There are diverse user groups with potentially conflicting needs

NASA-GB-00 1-96 32

Figure 5-4. Evolutionary Development Life-Cycle Model

Life-cycle phase

Concept definition

Requirements and
architecture
definition

Table 5-7. Products and Milestone Reviews for the Evolutionary Development Life-Cycle Model

Major products

Initial System Development Plan to be
updated in later phases
Preliminary requirements document
Architectural design document containing
the infrastructure plus the architecture of
each release as it evolves
Requirements traceabilitv map

Implementation

Integration and test

Evolutionary Implementation Plan
Timebox plan for each timebox (see Table

Software product baseline combining new,
reused, and off-the-shelf products
Updated requirements traceability map
Draft user documentation
System test procedures
Integrated, tested software
Qualification test report
Final user documentation

6-3)

Installation and
acceptance

Operations and
maintenance

Milestone reviews

System Concept Review (SCR)

Combined System Requirements
Review (SRR) and System
Design Review (SDR)

Timebox assessments
Qualification testing after all

timeboxes for the release have
been completed

Acceptance Test Readiness
Review (ATRR)

(Although these system life-cycle phases are shown in Figure 5-4 for completeness, they are not discussed here, or in
the corresponding tables for the other life-cycle models, because they are out of the scope of the software life cycle.)

33 NASA-GB-00 1-96

5.1.4 Package-Based Development Life-Cycle Model

Table 5-8 summarizes the life cycle defined by the package-based development model.

Table 5-8. Summary of Package-Based Development Life-Cycle Model

Summary description
and discussion

Advantages

Disadvantages

Most appropriate
when ...

The package-based development life-cycle model is used for system
development based largely on the use of commercial-off-the-shelf
and Government off-the-shelf products and reusable packages
(Reference 12). Typically, some custom software development is
needed to provide interfaces among the NDls.

This model is illustrated in Figure 5-5. Major products and milestone
reviews for this life-cycle model are summarized in Table 5-9.

Lower cost than developing equivalent functionality from scratch
Cycle time also often lower than developing equivalent
functionality from scratch
Improves confidence in quality of the end product (since quality of
NDls is already known)
May result in compromises between desired functionality and
f u nct iona I ity provided by N D Is
Maintainability may be more of a challenge because source of
NDls may not be the same NASA organization (for example,
requires third party to make changes, raises SCM issues when
NDI vendor releases uDdated versions)
A significant portion of the functionality of a system can be
provided bv NDls

NASA-GB-00 1-96 34

Refined requirements,

hstomer's requirements
/

Lifecycle phase Major products

Requirements Analysis System Development Plan
and Package Requirements
Identification Strawman high-level architecture

Candidate packages
Architectural Definition Modified requirements

and Package System architecture
Selection

Test

System Maintenance

Final packages
System Integration and Delivered system

Technology Update and Enhanced system

Requiredents

Milestone reviews

System Requirements Review (SRR)

System Design Review (SDR)

User demonstrations
Operational Readiness Review (ORR)
User demonstrations

Prototyping t
rechnology breakthrough , System
\lew require men ts,
\lew products

Maintenance

Figure 5-5. Package-Based Development Life-Cycle Model

Table 5-9. Major Products and Milestone Reviews for the Package-Based Development Life-Cycle
Model

35 NASA-GB-00 1-96

5.1.5 Legacy System Maintenance Life-Cycle Model

Table 5-1 0 summarizes the life cycle defined by the legacy system maintenance model.

Table 5-10. Summary of Legacy System Maintenance Life-Cycle Model

Summary description
and discussion

Most appropriate
when ...

The legacy system maintenance release life-cycle model is used to
apply fixes or minor enhancements to an operational system. (Use a
waterfall or incremental life-cycle model for major enhancements.)
Selected and sometimes abbreviated activities performed in the
software development life cycles are also performed during
maintenance. The legacy system maintenance life-cycle model is
similar in nature to the waterfall life-cycle model; the primary
difference is that the architectural design has already been
established (Reference I O) .

This model is illustrated in Figure 5-6. Major products and milestone
reviews for this life-cycle model are summarized in Table 5-1 1.

Maintenance release comprises only fixes and minor enhancements.

Requirements analysis

\

Detailed design e
Implementation & testing

Qualification testing

t
Delivery

Figure 5-6. Legacy System Maintenance Life-Cycle Model

NASA-GB-00 1-96 36

Table 5-1 1. Products and Milestone Reviews for the Legacy System Maintenance Life-Cycle Model

Design
Implementation and

testing

Qualification testing

Life-cycle phase I Major products I Milestone reviews

Release design specification Release Design Review (RDR)
Unit-level design Release Qualification Test Readiness
Implemented, tested software Review (RQTRR)
Qualification test plan and

Draft user’s guide updates
Qualification-tested software Acceptance Test Readiness Review
Qualification test report (ATRR)

Final user’s guide updates
As-built software description

proced u res

uwdates

Release planning I Release contents agreement I Release Contents Review (RCR)
Requirements definition Release requirements specification Release Requirements Review (RRR)

and analvsis

37 NASA-GB-00 1-96

5.2 Selecting Appropriate Activities, Methods, and Products

After an appropriate life-cycle model has been selected, it must be populated with software
engineering activities, methods, techniques, and products that will help achieve the goals and
objectives established for the project. The following subsections present implementation
guidance for each required activity (see Table 2-1) and identifj recommended methods for
performing those activities.

Two logical groups of activities are described in this section:
1. Activities that are performed to produce a specific software product (shaded in Figure

5-7, Primary Software Engineering Activities)
- Software CI requirements definition and analysis (Section 5.2.1)
- Software CI design (Section 5.2.2)
- Software CI implementation and testing (Section 5.2.3)
- Software CI qualification testing (Section 5.2.4)
- Preparation for software delivery (Section 5.2.5)

2. Activities that are performed in support of each of the first group of activities (shaded
in Figure 5-8, Software Engineering Support Activities and described beginning in
Section 5.2.6)
- Software product validation and verification (Section 5.2.6)
- Software configuration management (Section 5.2.7)
- Software quality assurance (Section 5.2.8)
- Milestone reviews (Section 5.2.9)

NASA-GB-00 1-96 38

Monitor and control software project
(maintain project software plan

and records as necessary)

0 Prepare software team

01 Prepare software team

Independently assure software products and activities (SQA) e
El

I

0 -.I 3 Manage configuration (SCM)
. . -. El Particbate in milestone reviews

:.I Validate and verib (V&V) software products

I ime

Figure 5-7. Primary Software Engineering Activities

Monitor and control software project
(maintain project software plan

and records as necessary)

Perform required technical activities
(i.e., software CI requirements definition and

analysis through qualification testing,
including interim deliveries)

until final product is delivered

I ime

Figure 5-8. Software Engineering Support Activities

39 NASA-GB-00 1-96

5.2.1 Software CI Requirements Definition and Analysis

Activity Requirements

Recommended methods
Structured requirements analysis (Table 5-1 2)
Object-oriented requirements analysis (Table 5-1 3)

NASA-GB-00 1-96 40

Table 5-12. Structured Requirements Analysis Method

Summary Description
and Discussion

Advantages

Disadvantages

Most appropriate
when ...

Key products

Structured requirements analysis is a method of analyzing and specifying the
requirements of a product from a functional point of view. Structured analysis
includes the use of data flow diagrams, data dictionaries, structured English,
decision tables, and decision trees to develop a structured requirements
specification.

Familiar to most software reauirements analvsts

It is sometimes difficult to transform data flow diagrams from this activity into
structure charts in the Software CI Design activity

Structured techniques will be used throughout the effort
The problem to be solved is well-understood

Software requirements specification (SWRS), including the following:
Classification of requirements by clarity level (fully defined, needs
clarification, or ambiguous) and by category (functional, performance,
operations, or programmatic)
Data flow diagrams (DFDs)
Function specifications
Data dictionaries
Identification and definition of external interfaces
Traceability matrices (maps software requirements to higher level system
requirements, if applicable)

41 NASA-GB-00 1-96

Table 5-13. Object-Oriented Requirements Analysis Method

Summary Description
and Discussion

Advantages

Disadvantages

Key products

Object-oriented requirements analysis is a method of analyzing and specifying
the requirements of a product in terms of the objects that the system is
modeling and operations that pertain to those objects.

There is empirical evidence within NASA that use of object-oriented
technology facilitates reuse
Felt by some NASA practitioners to be a more natural, intuitive approach
than traditional structured approaches, resulting in products that are more
maintainable and modifiable
Can be difficult for personnel with a structured analysis background
Unless a recognized object-oriented method is chosen (for example,
Booch, OMT), computer-aided software engineering (CASE) tool support
is limited or nonexistent
Object-oriented techniques will be used throughout the effort
Reusability, maintainability, or modifiability of the products developed is an
important objective

(The consensus of NASA personnel who have applied object-oriented
methods is that object-oriented technology is applicable in most situations.)

Software requirements specification (SWRS), including the following:
Classification of requirements by clarity level (fully defined, needs
clarification, or ambiguous) and by category (functional, performance,
operations, or programmatic)
Entity relationship diagrams, data flow diagrams, and state transition
diagrams
Identification and definition of external interfaces
Traceability matrices (maps software requirements to higher level system
reauirements. if anv)

Recommended techniques
Prototyping (Table 5-14)
Joint application development (JAD) workshops (Table 5-1 5)

NASA-GB-00 1-96 42

Table 5-14. Prototyping Technique

Summary Description
and Discussion

Advantages

Disadvantages

Key products

A prototype is an early experimental model of a system, system component,
or system function that contains enough capabilities for it to be used to
establish or refine requirements, or to validate critical design concepts. A
prototype is not an early operational version of a system. It does not contain
all required system support functions; is not meant to be as reliable or robust
as an operational system; and is seldom constrained by stringent
performance, safety, security, or operational requirements.

Prototyping is useful to clarify unclear requirements, to obtain buy-in on
user interface characteristics, to gain experience when a new technology is
being applied, or to evaluate alternative designs when major performance
or reliability issues are unresolved.
Users get to see early versions of product functionality and provide
feedback without a lot of time and effort on the part of the developers and
testers.
Prototyping is sometimes inappropriately used in an attempt to avoid
performing proven software engineering activities like peer reviews,
testing, configuration management, and documentation.
Users may interpret a prototype to be a finished product and not recognize
(or accept) that additional work is required to develop an operational
product.
Prototypes, even when used appropriately, have a tendency to become
operational products.
Requirements are unclear, when the user interface is crucial, when a new
technology is being applied, or when major performance or reliability
issues are unresolved.
Prototype development plan
A prototype of the product to be developed
Prototype summary report

43 NASA-GB-00 1-96

Table 5-15. JAD Workshop Technique

Summary Description
and Discussion

Advantages

Disadvantages

Key products

JAD is a facilitated workshop technique designed to bring together principal
stakeholders to solve a well-defined problem (for example, producing a product of
one of the recommended requirements analysis methods) in order to produce a
well-defined product or set of products (for example, a traceability matrix).

Includes people with authority to make decisions
Increases visibility into needs of customer and users, and concerns of
developers
Facilitates discussing alternatives, and advantages and disadvantages of each
Reduces risk that decisions made by workshop participants will be changed
later, thus reducing costs and cycle time due to less rework
Relies on effective group dynamics, resulting in increased synergism among
stakeholders

Impossible if principal stakeholders are not available, not given the authority, or not
backed by their management

Cycle time must be shortened
There are a number of interfacing organizations that are all stakeholders
Participants with knowledge and authority are available (or will be made
available)
There is adequate time for preparation, execution, and follow up
An exDerienced facilitator and amrotxiate facilities are available
Workshop notes
Action item lists
Intended end products of JAD workshop (requirements specifications in this
case)
Post-JAD management briefing

NASA-GB-00 1-96 44

5.2.2 Software CI Design

Activity Requirements

Recommended methods
Structured design (Table 5-16)
Object-oriented design (Table 5-1 7)

45 NASA-GB-00 1-96

Table 5-16. Structured Design Method

Summary Description
and Discussion

Advantages

Disadvantages

Most appropriate
when ...

Key products

Structured design is a method of designing a product from a functional point
of view. Structured design includes the use of structure charts, structured
English, data flow diagrams, data dictionaries, decision tables, and decision
trees to develop a structured design specification.

Familiar to most software designers

There is empirical evidence within NASA that components designed using
structured methods are less reusable and less maintainable than those using
object-oriented methods

It is sometimes difficult to transform data flow diagrams from the Software CI
Requirements Definition and Analysis activity into structure charts in this
activity

Product being engineered is one-of-a-kind and is expected to have a relatively
short life time (for example, up to a few years)

Software design specification (SWDS), including the following:

Data flow diagrams (DFDs)
Structure charts
Function specifications
Data dictionaries
Traceability matrices (maps software design components to software
requirements)

Table 5-1 7. Object-Oriented Design Method

Summary Description
and Discussion

Object-oriented design is a method of designing a product in terms of the
objects that the system is modeling and operations that pertain to those
objects.

Advantages There is empirical evidence within NASA that use of object-oriented
technology facilitates reuse
Felt by some NASA practitioners to be a more natural, intuitive approach
than traditional structured approaches, resulting in products that are more
maintainable and modifiable
Can be difficult for personnel with a structured design background I Unless a recognized obiect-oriented method is chosen (for example,

Disadvantages

Key products Software design specification (SWDS), including the following:

Refined object diagrams
Traceability matrices (maps software design components to software
reau iremen ts)

NASA-GB-00 1-96 46

Recommended techniques QB< The same techniques recommended in Section 5.2.1 (Software CI Requirements
Definition and Analysis) are often useful in defining and evaluating alternative
software CI designs.

Tailoring Guidance for the Design Activity

When there is a high level of design reuse, the architectural design probably already exists and
need not be considered a separate element of the design activity. However, be sure to highlight
changes from the reused architectural design.

5.2.3 Software CI Implementation and Testing

This activity consists of two essential elements:
1. Implementation and unit testing
2. Integration and testing

47 NASA-GB-00 1-96

5.2.3.1 Software Implementation and Unit Testing

Activity Requirements

NASA-GB-00 1-96 48

Recommended testing methods

Because software testing is a key element in several required software engineering
activities and because different testing methods are appropriate in different
situations, the proven testing methods are summarized in one section of this
handbook, Section 5.2.6, Software Product Validation and Verification.

Tailoring Guidance for Unit Testing

The formality and rigor of unit testing will vary depending on the unit’s complexity and
criticality. Units that are especially complex or critical may need to be tested in isolation, using
test drivers and stubs. Otherwise, the testing may be conducted on a collection of related units,
perhaps in conjunction with integration testing. Select the level of formality and rigor that is most
appropriate and cost-effective for the project as a whole or for various parts of the system.

49 NASA-GB-00 1-96

5.2.3.2

r /

Software Integration and Testing

Activity Requirements

NASA-GB-00 1-96 50

Recommended integration methods
Top-down method (Table 5-1 8)
Bottom-up method (Table 5-1 9)
Functional path method (Table 5-20)

Table 5-18. Top-Down Method

Summary Description
and Discussion

Integration follows a top-down approach, where lower level modules are
added to the top-level driver, level by level, until all components have been
integrated and tested.

Advantages

Disadvantages

Most appropriate
when ...

Summary Description
and Discussion

Advantages

Disadvantages

Most appropriate
when ...

Integrated, tested system can be used as drivers (does not need drivers for
higher level calling routines)

Needs stubs for lower-level called components until the real components
become available

Architectural design is broad and shallow (for example, transaction
processing)
Emphasis is on high-level interfaces
Using high-level NDls
Beginning to integrate
There is risk or uncertainty regarding the architectural design

Table 5-19. Bottom-Up Method

Integration follows a bottom-up approach, where low-level components are
integrated and tested with other low-level components, which are then
integrated and tested with other low-level components, and so on until all
components have been integrated and tested.

Does not need stubs for lower level called components

Needs drivers for higher level calling routines until the real components
become available

Architectural design is narrow and deep (for example, scientific systems)
Working on utility components
Working on standalone algorithmic components
Using low-level NDls
Beginning to integrate

51 NASA-GB-00 1-96

Table 5-20. Functional Path Method

SummaW Description
and Discussion

An end-to-end functional path (or thread) is constructed, to which other
modules are then added, until all components have been integrated and
tested.

Advantages Tests functions or objects in context
Helps assure that functional requirements are being addressed
Requires fewer drivers, since the only driver required is the one needed to
initiate the thread

Harder to ensure complete testing coverage Disadvantages

Making enhancements to an existing system
Verifying end-to-end data flows
Integration has progressed to the point where there is an existing structure
to build into
Architectural desian is obiect-oriented

Recommended testing methods QB< Refer to Section 5.2.6, for a discussion of recommended testing methods.

Tailoring Guidance for Integration Testing

Just as described for unit testing, the formality and rigor of integration testing will vary
depending on the module’s complexity and criticality. Modules that are especially complex or
critical may need to be tested in isolation, using test drivers and stubs. Otherwise, the testing may
be conducted on a collection of related modules. Select the level of formality and rigor that is
most appropriate and cost-effective for the project as a whole or for various parts of the system.

TIPS

activities on new and modi tied components.

t t For high-reuse systems, concentrate integration testing

NASA-GB-00 1-96 52

5.2.4 Software CI Qualification Testing

Activity Requirements

Recommended methods QB< Refer to Section 5.2.6 for a discussion of recommended testing methods.

53 NASA-GB-00 1-96

5.2.5 Preparing for Software Delivery

Activity Requirements

NASA-GB-00 1-96 54

55 NASA-GB-00 1-96

5.2.6 Software Product Validation and Verification

Note: Recall that this is the first of four sections describing the group of support engineering
activities shown in Figure 5-8. (See the beginning of Section 5.2.)

Activity Requirements

NASA-GB-00 1-96 56

Table 5-21. Software Product V&V Summary

Software product ...

Software requirements
specification (SWRS)

... Is evaluated against (at least) the
following requirements or design

specification ...
System requirements allocated to the Walkthroughs; document reviews;

... Usually using the following product
V&V method@)

software CI inspection

I SWRS
Software design

wecification (SWDS)
SWDS (detailed design)

Unit-level design specifications

SWDS (detailed design)

Initially, based on SWDS; later,
evolving toward SWRS

Initially, based on SWRS; later,
evolving toward system
requirements allocated to the
software CI

software CI
System requirements allocated to the

Walkthroughs; document reviews; I inmection
Inspection (per unit design

Inspection (per unit code certification

Unit testing (per unit test plan)
Integration testing (also known as

certification criteria)

criteria)

module, string, thread testing) (per
integration test plan)

Build qualification testing (BQT) (per
BQT plan)

Formal (release) qualification testing
(FQT) (per FQT plan)

Acceptance testing (AT) (per AT plan;
when the system is a software
system, FQT is the AT)

Unit-level design
sDecifications

Unit-level code

Integrated sets of units
(modules) up to the CI
level

Software CI build

Software CI release

Software delivery to
customer

Recommended methods
Peer review methods
- Inspection method (Table 5-22)
- Walkthrough method (Table 5-23)
- Document review method (Table 5-24)
- Demonstration method (Table 5-25)
Testing methods
- Functional (black box) testing (Table 5-26)
- Structural (white or clear box) or coverage (statement, branch, or

path) testing (Table 5-27)
- Statistical testing (Table 5-28)
- Regression testing (Table 5-29)
- Cleanroom (Table 5-3 1)

57 NASA-GB-00 1-96

Table 5-22. Inspection Method

I Key products

Summary Description
and Discussion

Comments from team members
Questions to be answered
Action items

Advantages

Disadvantages

Key products

Inspections are well-defined peer reviews that are intended to verify
correctness, quality, and compliance with requirements and standards. There
are two types of inspection: One-on-one and team. A one-on-one inspection
relies on a single inspector; team inspections include two or more. (However,
studies conducted within NASA as well as other parts of the software industry
clearly show that two or more inspectors are far more effective in discovering
defects than a single one (Reference 14).) The primary use of inspections is
to find defects; secondary uses include exposing team members to details of
other parts of the system, helping increase awareness of the importance of
paying attention to details when creating products, helping more junior
personnel identify more subtle defects, and increasing the skills of junior
personnel by exposing them to the techniques used by more senior staff
members.

Product certification is used as input to the project’s progress measurement
process. Defects found by inspections (which are recorded on inspection and
certification records) are used as input to the defect causal analysis process.

Very thorough

Sometimes misapplied-either focuses only on minor defects, such as
formatting issues, or done as a formality to certify a product after informal
peer reviews have already been performed and no further defects are known.

Overall development time is tight
Time allocated to higher level testing is tight
Product quality goals are high
Inspection and certification records (software product V&V records)
Inspection data collection forms

Table 5-23. Walkthrough Method

Summary Description
and Discussion

Walkthroughs are primarily a method for communicating information to team
members. Walkthroughs are not intended to be a defect-finding tool; however,
obvious problems are sometimes identified during a walkthrough.

Quick, effective, relatively informal method for sharing information with peers.

Disadvantages Sometimes used in place of inspection method (walkthroughs are not nearly
as thorough as inspections; defects are likely to escape detection until later in
the life cycle, when effort to repair is greater).

NASA-GB-00 1-96 58

Table 5-24. Document Review Method

Summary Description
and Discussion

Advantages

Document reviews are peer reviews of a finished document that are intended
to verify completeness, correctness, consistency, quality, and compliance with
sta nda rds

Enables review of all parts of a document in context with each other

Summary Description
and Discussion

Advantages

Disadvantages

Most appropriate
when ...

~

Key products

Table 5-25. Demonstration Method

Demonstrations are most frequently used in conjunction with prototypes. The
purpose of a demonstration is to solicit feedback from another group (for
example, end users of the product).

Facilitates early evaluation of product characteristics in terms of product’s
look and feel
Encourages customer and end user participation
Effective demonstrations require careful preparation (that is, they take
extra time and effort)
May lead customer and end users to believe that product is (almost) done
Evaluation may occur later in phase than would occur using other methods
Can lead to requirements growth in terms of nice-to-have features

Alternative approaches need to be evaluated (for example, user interface
techniaues)

Prototypes
Demonstration summary, results, or agreements

59 NASA-GB-00 1-96

Table 5-26. Functional Testing Method

Summary Description
and Discussion

Advantages

Disadvantages

Most appropriate
when ...

Key products

In functional testing, sometimes referred to as black box testing, verifying
functionality and correct interfacing of software components is the focus. The
tester does not need to understand the internal design of the software
component(s) under test, nor how it is implemented-simply what the
software is expected to do.

Functional testing is often organized based on threads of software
components that accomplish a higher level function, and is sometimes based
on operational scenarios. NASA software testers have found tests based on
operational scenarios to be very effective at uncovering errors.

Not overly time-consuming
Ensures that functional requirements are tested
Can be performed by testers without detailed knowledge of design of the
software
Less likely to detect defects in parts of software that are not frequently
executed
Identifies symptoms of defects, not necessarily their causes
Robustness of product is not established

A primary objective of the testing is to verify

Satisfaction of requirements
Correct interfacing of components
Test plans and procedures, including traceability to design or requirements
specification (see Table 5-21)
Test records (software product V&V records)

NASA-GB-00 1-96 60

Table 5-27. Structural or Coverage Testing Method

Summary Description
and Discussion

Structural testing, sometimes referred to as clear box or white box testing, is
testing in which verification of correct implementation of the software design is
the focus. The tester must understand the internal design of the software
component(s) under test.

Coverage testing is a specific form of structural testing that is designed to
ensure that each statement or logic path or software component is executed
at least once.

Advantages Increases confidence in structure of design and correct implementation of
the design
More likely (than functional testing) to identify causes of problems

Disadvantages Very time-consuming
May miss aspects of functionality and of the “big picture”
Requires in-depth understanding of software internals

software paths
Lower level component testing is being performed (that is, unit level or

Key products Test plans and procedures, including traceability to design or requirements
specification (see Table 5-21)
Test records (software product V&V records)

Table 5-28. Statistical Testing Method

Summary Description
and Discussion

Advantages

Statistical testing is testing based on a detailed assessment of expected
usage profiles of characteristics of the software that are especially important
to the customer. Such characteristics include assessing which software
components will be executed most often, which components can cause
catastrophic results if defects are present, etc. Statistical testing is usually
based on operational scenarios.

Concentrates testing effort on parts of the software that are most important to
the customer

Disadvantages Requires an in-depth understanding of how the software will be used
operationally
Increases possibility that defects will remain undiscovered in less
freauentlv exercised parts of the software

Key products Test plans and procedures, including traceability to design or requirements
specification (see Table 5-21)
Test records (software product V&V records)

61 NASA-GB-00 1-96

Table 5-29. Regression Testing Method

Statistical

Regression

Summary Description
and Discussion

J

J

Advantages

Disadvantages

Most appropriate
when ...

Key products

Regression testing is retesting previously tested software after some kind of
change has been made. Changes may have been made in the software itself,
or in other software or hardware with which the software interfaces. The
purpose of regression testing is to verify that the changes have not adversely
affected previously tested software.

Regression testing does not usually include rerunning all test cases that were
originally used, but instead a predefined subset of the test cases that are
selected based on criteria established by the project team and the customer.

Promotes confidence in an evolving product
Ensures that obvious defects have not been introduced into the Droduct

If regression test sets are not chosen carefully,
Considerable effort can be expended if testing is overly exhaustive
Defects can go undetected if testing is too superficial

Changes are made to software that has undergone higher levels of testing
(that is, integration level or qualification level)

Test records (software product V&V records)

One large NASA organization has found over the past few years that the methods summarized in
Table 5-3 0 have been used most often for unit-level, integration-level, and qualification-level
testing.

Table 5-30. Testing Methods vs. Testing Levels

Testing Unit Level Integration Level
Method Testing Testing

Functional

St ruct u ra I

J I Coverage I J

Qualification Level
Testina

J

J

J

The Cleanroom method (Reference 15) is an alternative approach that has been used successfully
on some NASA projects (Reference 16).

NASA-GB-00 1-96 62

SummaW Description
and Discussion

The Cleanroom method provides an alternative to traditional testing, with a
goal of preventing software errors rather than detecting them. Developed at
IBM in the late 1980s, Cleanroom relies on human discipline and intellectual
control to build quality into the final product instead of on computer-aided
program debugging to detect and remove errors

Tailoring Guidance for Software Product V& V

Select or adjust the product V&V methods based on the customer’s goals and objectives for cost,
schedule, and product qualities. For example,

If high robustness or reliability is called for
- Increase the amount of peer review and testing
- Increase the degree of independence of the evaluators from the developer

If less robustness or reliability is acceptable
- Have peer reviews and testing focus on those portions of the system that are

expected to have high use or are especially critical

Refer to Appendix Appendix C. for guidelines for evaluating NDIs. (Examples of procedures for
V&V can be found in Reference 17.)

Advantages

Disadvantages

63

Successful application of the Cleanroom methodology can significantly
increase software quality and reliability, decrease test and debug time, and
minimize rework efforts

May not be applicable to large projects

NASA-GB-00 1-96

5.2.7

4

Software Configuration Management

Activity Requirements

NASA-GB-00 1-96 64

Tailoring Guidance for the SCM Activity

Levels of Control-There are two fundamental levels of software product change control:
baseline control (or configuration management) and local control. Apply the appropriate level
and type of control to verified products-intermediate as well as delivered, new as well as
changed from previously controlled versions.

Baseline Control. Some software products, for example, the software requirements, design, and
code, should have baselines established at predetermined points. These baselines are reviewed
and agreed on with the customer, and serve as the basis for further development. Baselines are
typically established in conjunction with milestone reviews, such as SSR (software
requirements), CDR (software design), and following software CI qualification testing and
physical configuration audit (PCA) or functional configuration audit (FCA) (code). Apply a
rigorous change control process to baselined items.

Local Control. Some software products, such as the software plan, may not need to be placed
under baseline control, but still need to be controlled locally. This implies that the version of the
product in use at a given time (past or present) is known (that is, version control), and changes
are incorporated in a controlled manner (that is, change control). For example, software plans are
typically placed under local control, but not baseline control.

The specific change control approach used by a software project will vary based on many factors.
On some projects, the customer is responsible for some or all SCM functions; in other cases, the
software team is responsible; and sometimes the responsibilities are split (for example,
requirements documents might be controlled by the customer, but design documents might be
under local control until the CI is delivered). Similarly, the configuration review function for a
large project might require a formal configuration control board (CCB) while the CCB for a four-

65 NASA-GB-00 1-96

person development project might be simply the software project manager and a customer
representative.

Each project’s product control approach is defined in the SCM portion of its software plan and
specifies which products are to be placed under baseline control and which will be under local
control. The approach defines what products will be controlled, under what conditions each kind
of product is initially placed under control, who controls it and where, and what has to occur to
change it.

Configuration Audits-It may not be necessary to perform FCAs or PCAs at CI level, they may
be done at higher level (for example, system or release). Nor is it necessary to perform FCAs and
PCAs separately, they may be done together on a system level. (Reference 17 includes examples
of procedures for FCAs and PCAs.)

Requirements Management-While a software product’s requirements are only one of several
subordinate entities that must be controlled, they are emphasized here because everything that the
software team does is based on those requirements. Poor management of requirements has
caused problems in the past.

If the customer does not require or maintain any form of software requirements specification, the
software team should document and control (to whatever degree of formality is deemed
appropriate) the product’s requirements as they understand them and as they are being
implemented. The customer should be given a copy of these software requirements to help ensure
that the software team and the customer have a common understanding of the basis for the end
software product. The requirements should be kept up to date in a controlled fashion.

NASA-GB-00 1-96 66

5.2.8 Software Quality Assurance

Activity Requirements

Recommended Methods
Auditing, monitoring, and assessing performance of activities and
qualities of products

In some environments, the term SQA is used to refer to more than “independent assurance of software products and
process”; that is, it sometimes includes peer reviews, testing, etc. This guidebook, however, restricts the SQA
activity to include only independent assurance; peer reviews, testing, etc. are included under the Software Product
V&V activity.

67 NASA-GB-00 1-96

5.2.9 Milestone Reviews

Activity Requirements

NASA-GB-00 1-96 68

69 NASA-GB-00 1-96

Table 5-32. Candidate Milestone Reviews

Review

Concept or contents reviews
(SCRs, RCRs)

RRRs)
I

System design reviews (SDRs)

I

Software specification reviews
(SSRs)

Software design reviews (PDRs,
CDRs, BDRs, RDRs)

I Test readiness reviews (QTRRs,

I

Operational readiness reviews
(ORRs)

Objective
These reviews are held to provide management with the information
necessary to assess progress and execute appropriate corrective action,
if required, regarding:

The operational concept for a software system or the content of a
release.

The specified requirements for a software system, subsystem, or
release and to establish the functional baseline.

One or more of the following:

0 The system- or subsystem-wide design decisions
0 The architectural design of a software system or subsystem

and to establish the system design baseline.

The specified requirements (that is, SWRS) for a software CI and to
establish the CI-allocated baseline. (SSRs may also be referred to as
SRRs when the svstem is essentiallv all software.)

One or more of the following:
0 The software CI-wide design decisions
0 The architectural design of a software CI
0 The detailed design (that is, SWDS) of a software CI or portion

thereof (such as a database or an upcoming build)
and to establish the CI development baseline.

One or more of the following:
0 The status of the software test environment
0 The test cases and test procedures to be used for software CI

qualification testing or system qualification testing
0 The status of the software to be tested
The reviews that follow software CI qualification testing, PCA, and FCA,
but precede the next stage of testing (that is, either system-level
integration and testing or system installation and acceptance testing)
are held to establish the CI product baseline.

One or more of the following:
0 The readiness of the software for installation at operational sites
0 The user and operator manuals
0 The software product specifications
0 The software version descriptions
0 The status of installation preparations and activities
0 The status of transition preparations and activities, including

transitioning the software development environment (if applicable) to
the maintenance organization

and to establish the operational baseline.

NASA-GB-00 1-96 70

Q/ Recommended Methods

Summary Description
and Discussion

Advantages

Disadvantages

Most appropriate
when ...

Key products

Summary Description
and Discussion

Advantages

Disadvantages

Most appropriate
when ...

Key products

Meetings (Table 5-33), for example, the milestone review may be held
as the final element of a JAD workshop (see Table 5-15)
Presentations (Table 5-34)
Demonstrations (Table 5-3 5)

Table 5-33. Meetings

Meetings come in a wide variety of sizes (for example, length, depth of
coverage, number of attendees) and degrees of formality. This variation can
be of considerable advantage to the software manager in that he or she can,
in conjunction with the customer, establish the most cost-effective structure
for the meeting.

Usually most efficient and least costly method
Easily scheduled and planned
More conducive to greater interaction of participants than presentations
Degree of formality may not be acceptable to the customer
Sometimes difficult to control

Agreeable to the customer

Action items
Approved products(s)
Approval to proceed to the next phase

Table 5-34. Presentations

Presentations, like meetings, come in a wide variety of sizes and degrees of
formality. Usually, however, additional effort is expended in preparing
materials designed expressly for the presentation.

Involve a larger audience than meetings

Involve a larger audience than meetings
Usually more formal than meetings and, therefore, require more
preparation effort ; for example, may req u ire prod uci ng presen tat ion-q ua I ity
slides, holding dry runs
Less conducive to interaction of audience than meetings

Required by the customer

Action items
Approved products(s)
Approval to proceed to the next phase

71 NASA-GB-00 1-96

SummaW Description
and Discussion

Demonstrations are used to display the current state of the software product
or prototypes of the product

I Key products I Action items

Advantages

Disadvantages

Approved products(s) I Approval to proceed to the next phase

Instill level of confidence that the project is on the right track

In early life-cycle phases, users may interpret the product to be finished and
not recognize (or accept) that additional work is required to develop an
operational product

Tailoring Guidance for the Milestone Reviews Activity

Milestone reviews may be conducted incrementally, dealing at each review with a subset of the
listed items or a subset of the system or software CI(s) being reviewed.

NMI 7 120.4 (Reference 18) establishes management policies and responsibilities for major
system program and projects. The companion NASA Handbook (NHB) 7120.5 (Reference 19)
indicates that only PDRs and CDRs are required of all major program^.^ The candidate milestone
reviews discussed in this guidebook are recommended, but not required, for all software
development and maintenance projects, not only for major programs.

NMI 7120.4 defines the scope of a “major” program or project. 4

NASA-GB-00 1-96 72

73 NASA-GB-00 1-96

6. Finishing the Software Plan-Defining the
Management Approach

he preceding two chapters described how to understand the scope and characteristics of
the work to be performed, and how to define an appropriate technical approach to perform T the work. This chapter describes the steps needed to define the management approach for

the project and to document and review the project’s software plan. (As recommended in Chapter
4, planning should be coordinated, as much as possible, with other groups responsible for related
software efforts.)

Activity Requirements

The rest of this chapter provides guidance in accomplishing this required activity.

75 NASA-GB-00 1-96

6.1 Establishing the Software Project’s Organizational Structure
Activity Requirements

Independent
Software Quality LJ Assurance

Project Manager
(if appropriate) or
Senior Manager i, I_ - - - - - - - -

[Project] Software
Manager

.____----

Software Configuration (or
Change) Review Configuration

Manager

Requirements Qualification
Analyst(s) Tester(s) Tester(s)

Figure 6-1. Typical Software Project Organization

Tailoring guidance

While Figure 6-1 illustrates a typical NASA software engineering organization, it does not imply
that different persons are responsible for each role. Quite the contrary, very often a single
individual may assume two or more roles on a typical software project (though care must be
taken when assigning personnel to roles in which independence is required). These roles may
also be filled by personnel from outside of the software team’s own organization (for example,
customer personnel may be responsible for certain roles).

NASA-GB-00 1-96 76

6.2 Estimating and Scheduling the Work

Period planned

Activity Requirements

Purpose of estimate and plan

Table 6-1. Three Levels of Estimates and Plans

Project, start to finish

Upcoming build

Provide customer with an estimate and plan for the full software effort.
Ensure thorough high-level analysis of the full software effort.

Ensure thorough detailed analysis of the work to be accomplished in the next
build.

Fiscal year Develop plans that reflect the customer’s budget for the fiscal year.

Tailoring Guidance

Local standards for estimating size, effort, and duration are based on models derived from
historical records of similar projects developed by the same organization. The basis of a size
estimate for software projects, for example, may be actual counts of lines of codes, function
points, database transactions, or whatever unit is appropriate for the application domain.

An example of local standards for estimating can be found in the Manager’s Handbook for
Software Development (Reference 7) of the NASA Software Engineering Laboratory (SEL). The
SEL derived local estimation standards for all software developed or maintained within the Flight
Dynamics Division at GSFC. The SEL’s estimation models are based on the Constructive Cost
Model (COCOMO) (Reference 20) but are tailored to the local environment and based on
analysis of measurement data collected from software projects since 1976. A detailed explanation
of the derivation of the SEL estimation models can be found in the Cost and Schedule Estimation
Study Report (Reference 21). Further examples are available in the NASA Software
Measurement Guide book (Reference 5).

TIPS

The best estimate is still just an estimate. Expect to have to re-
estimate as a result of monitoring the status of the pro-ject (see
Section 7.1.2).

t t

77 NASA-GB-00 1-96

Activity Requirements

SummaW Description
and Discussion

Recommended techniques
Mini-Waterfall
Timeboxes

This is the traditional technique for planning builds. That is, each build
includes some emphasis on analyzing the requirements allocated to the build,
usually includes detailed design of the portion of the software that will be
implemented in the build, implementation and testing of the software, and
qualification testing of the build.

Table 6-2. Mini- Waterfall

Disadvantages Basically the same as those described under Waterfall Life-Cycle Model
(Table 5-2) but not as significant in impact; that is, the requirements to be
implemented in the build must be known before beginning the build.

Advantages I Technique is familiar to most managers

NASA-GB-00 1-96 78

Table 6-3. Timeboxes

SummaW Description
and Discussion

A timebox refers to a subdivision of a build created to achieve a unit of
production that is manageable in size, complexity, staffing, and duration. It is a
planning construct that controls functionality delivered by establishing fixed
resource and time budgets. That is, when the allocated time and effort have
been expended, it is time to move on to the next timebox.

Advantages Helps avoid “gold plating”
Disadvantages The product resulting from the timebox might not be complete in its own right

Functionality is not well-understood or is likely to change considerably
Using the evolutionary development life-cycle model
Developing prototypes
Cvcle time is critical

Tailoring Guidance for Planning Builds
Avoid treating all software CIS as though they must be developed in lock-step,
reaching key milestones at the same time. Allowing software CIS to be on different
schedules can result in more optimal development.
Similarly, avoid treating software components within a CI as though they must be
developed in lock-step, all designed by a certain date, implemented by a certain date,
etc. Flexibility in the scheduling of software components can also be effective.
The required software engineering activities need not be performed sequentially.
Several may be taking place at one time, and an activity may be performed continually
or as needed throughout a build or across multiple builds. The activities in each build
should be laid out in the manner that best suits the work to be done.

79 NASA-GB-00 1-96

6.3 Planning Other Activities
Activity Requirements

NASA-GB-00 1-96 80

. - l c ~ i i . i ~ . reqirirements continired

Primary products. The primary products from this activity are as follows:

0 Training plan
0 Risk management plan
0 TPM plan
0 Process improvement plan

Management measurement plan

Activity

Software project planning

Table 6-4. Required Activities and Related Measures

cost Schedule Defects Other

Ja

Software CI requirements definition and
analysis

Software CI design

J J J Risks, TPMC

J J J Risks, TPMC

Software CI implementation and testing

Software CI qualification testing

Preparing for software delivery

Software project close-out

J J J Risks, TPMC

J J J Risks, TPMC

Software product V&V I J I I I

Milestone reviews

Software team preparation

Software configuration management I db

J

Software quality assurance I J b I I I

Project mon itori ng and control I i ng

Software process improvement

Ja

J J

System-level considerations J J

Recommended process improvement method
Process studies (Table 6-5) (Reference 2)

81 NASA-GB-00 1-96

Table 6-5. Process Studies

Summary Description
and Discussion

Advantages

A process study is a method by which the software manager can objectively
determine the impact of introducing a new technology into the software
engineering process. The study consists of identifying the objective of the
change (for example, reduce cost of development), identifying the new
technology, recording the baseline characteristic to be improved (for example,
development cost of like products), and identifying the measures to
demonstrate whether the objective has been attained. The project team
applies the new technology to its work. The resulting measures are compared
with the baseline characteristics, thus quantifying the effect of the new
technology on the product or process. The results are recorded and made
available for use by others.

Provides an objective means of assessing a new software technology.

I Disadvantages I None

Process study plan I Process studv reDort
Key products I

NASA-GB-00 1-96 82

6.4 Reviewing the Software Plan
Activity Requirements

83 NASA-GB-00 1-96

7. Running the Project

hapters 3 through 6 discussed how to develop a plan to facilitate running the project. This
chapter focuses on the software manager’s activities during the execution of the project.
Those activities are shown in the shaded portions of Figure 7-1 :

Closing out the project.
Using the software plan to guide the project in its engineering efforts

C

Perform required technical activities
(i e , software CI requirements definition and

analysis through qualification testing,
including interim deliveries)

until final product is delivered

I ime

Figure 7-1. Running the Project

85 NASA-GB-00 1-96

7.1 Managing the Project
Activity Requirements

7.1 .I Preparing the Software Team

Activity Requirements

NASA-GB-00 1-96 86

7.1.2 Monitoring and Controlling the Project

Activity Requirements

87 NASA-GB-00 1-96

7.1.3 Communicating with Stakeholders

Weekly progress reports
Monthlv status reports

Activity Requirements

To ensure regular communication of recent activities and outstanding issues
To ensure regular review and reporting of progress and cost

Table 7-1. Recommended Status Reports and Meetings

Periodically with the
project team members

I Mechanism I Purpose I

To communicate or discuss issues and changes
To provide a forum for questions and answers
To strengthen team cohesiveness

Status reports I

Periodically with the

With interfacing groups as

customer

needed

To communicate or discuss issues and changes
To maintain insight into customer’s “hot buttons”

To communicate or discuss issues and changes

- - . -
Meetings I

NASA-GB-00 1-96 88

System requirements allocated to SW CI Software CI requirements definition team

Software CI requirements Designers

Software design lmplementers

Tested code components

Tested software CI

SW CI integrators and testers

System integrators and testers

Tested system Customer

Figure 7-2. Product Handovers

89 NASA-GB-00 1-96

7.1.4 Maintaining the Software Plan

Activity Requirements

NASA-GB-00 1-96 90

7.1.5 Keeping Project Records

Activity Requirements

91 NASA-GB-00 1-96

7.2 Closing Out the Project
Activity Requirements

NASA-GB-00 1-96 92

93 NASA-GB-00 1-96

Appendix A. Glossary

Acceptance. An action by the customer (or an authorized representative) by which the customer
assumes ownership of software products as partial or complete fulfillment of software
requirements.

Activity. A unit of work that has well-defined entry and exit criteria. Activities can usually be
broken into discrete steps.

Adapted unit. An existing unit that changes substantially (more than 25 percent of its content is
changed, added, or deleted). Its origin is usually external to the project. (Contrast with new unit,
converted unit, transported unit.)

Architecture. The organizational structure of a system or software CI, identifLing its
components, the component interfaces, and a concept of execution among the components.

Build. A version of software that meets a specified subset of the requirements that the completed
software will meet. (See also release.)

Certification. Written confirmation that a work product has been evaluated (for example,
inspected or tested) and any defects found by that evaluation process have been satisfactorily
resolved.

Configuration item (CI). System component (for example, hardware CI or software CI) that is
developed or purchased, controlled, accepted, and maintained separately from other system
components. In practice, it is a component that is convenient and sensible to document and
control as an entity. (See software configuration item.)

Converted unit. Existing unit that changes slightly (up to 25 percent of its content is changed,
added, or deleted). Its origin is usually external to the project. (Contrast with new unit, adapted
unit, transported unit.)

COTS (or GOTS) software. Commercial (or government), off-the-shelf software. COTS and
GOTS software includes (1) unique components that must be delivered with the product to
execute the operational software and (2) development tools that must be delivered with the
product to support maintenance of the software.

Customer. The organization that procures software products for itself or another organization.

Cycle time. Elapsed calendar time (not effort) required to complete a given piece of work. For
software efforts, cycle time usually refers to either (1) the full product engineering period (from
initial receipt of product requirements through acceptance by the customer of the fully functional
delivered product) or (2) a release cycle (from agreement on the requirements for the release
through acceptance by the customer of the delivered product). The latter case, the release cycle,
can pertain to new development releases as well as maintenance and enhancement releases. (See
also software life cycle.)

Design. Those characteristics of a system or software CI that are selected by the software team in
response to the requirements (see requirements). Some will match the requirements; others will

95 NASA-GB-00 1-96

be elaborations of requirements, such as definitions of all error messages in response to a
requirement to display error messages; still others will be implementation related, such as
decisions about what software units and logic to use to satisfj the requirements.

Development. Production of a new product that leads to delivery of all initially planned
functional capability. The new product may be built from newly created components, reused
components (with or without adaptations), GOTS components, and COTS components. (Contrast
with enhancement, maintenance; see also software engineering.)

Documentation. A collection of data, regardless of the medium (or media) on which it is
recorded, that generally has permanence and can be read by humans or machines. The
significance of this definition is that documents do not necessarily have to be separately bound
entities; they may comprise data in several media (for example, plans, CASE tools, databases).

Enhancement. A major addition or change in the functionality of an operational system; often
includes many of the same activities as new development. (Contrast with new development,
maintenance; see also software engineering.)

Firmware. The combination of a hardware device, computer instructions, and computer data that
reside as read-only software on the hardware device.

GOTS software. (See COTS/GOTS software.)

Inspection. A process whereby products are reviewed for correctness, completeness, quality, and
compliance with requirements and standards. The process is carried out by one or more peers of
the product’s developer. (Contrast with walkthrough.)

Joint application design (JAD). A facilitated workshop technique that brings together principal
stakeholders to solve a well-defined problem to produce a well-defined product or set of
products .
Life cycle. (See software life cycle.)

Life-cycle model. A framework on which to map activities, methods, standards, procedures,
tools, products, and services (for example, waterfall, spiral).

Life-cycle phase. A division of the software effort into non-overlapping time periods. Life-cycle
phases are important reference points for the software manager. Multiple activities may be
performed in a life-cycle phase; an activity may span multiple phases. (Contrast with activity.)

Maintenance. Implementation of problem fixes and minor enhancements to an operational
product. (Contrast with new development, enhancement; see also software engineering.)

Method. A technique or approach, possibly supported by procedures and standards, that
establishes a way of performing activities and arriving at a desired result.

Methodology. “A collection of methods, procedures, and standards that defines an integrated
synthesis of engineering approaches to the development of a product.” (Reference 22)

Milestone review. A process or meeting involving representatives of both the customer and the
software team, during which project status, software products, and project issues are examined
and discussed.

Module. A cohesive group of software units that performs a software function.

NASA-GB-00 1-96 96

New development. (See development.)

New technology. A technology that has not yet been proven to be effective in practice in a
particular NASA application area or domain. It may have been proven elsewhere, however. (See
also technology.)

Non-developed item (NDI). A component that is not newly created by the software team. This
includes reused components, COTS and GOTS components, and components developed by other
NASA groups or contractor personnel.

Organization. “A unit within [NASA] within which many projects are managed as a whole. All
projects within an organization share a common top-level manager and common policies.”
(Reference 22)

Phase. (See life-cycle phase.)

Policy. “A guiding principle, typically established by senior management, which is adopted by an
organization or project to influence and determine decisions.” (Reference 22) (Contrast with
procedure, standard.)

Procedure. A written description of the roles, responsibilities, and steps required for performing
an activity or a subset of an activity. (Contrast withpolicy, standard.)

Process. “A sequence of steps performed for a given purpose; for example, the software
engineering process.” (Reference 9)

Process asset library (PAL). A NASA library, including a life-cycle methodology description,
standards and procedures, guidebooks and handbooks, style guides, software profiles, key
lessons, study results, tailored processes, examples of acceptable products, etc.

Product. (See software product.)

Project. (See software project.)

Project process. A tailored version of the organization’s standard process, defining and
integrating specific life-cycle models, activities, methods, procedures, standards, and tools used
to accomplish delivery of the project’s required products and services. It is defined in the

Prototype. An early experimental model of a system, system component, or system function that
contains enough capabilities for it to be used to establish or refine requirements, or to validate
design concepts.

Qualification testing. Testing performed to verify and demonstrate (often to the customer) that a
software CI or a system meets its specified requirements.

Record. To record information means to set down in a manner that can be retrieved and viewed.
The result may take many forms, including but not limited to hand-written notes, hard-copy or
electronic documents, and data recorded in CASE and project management tools. Information to
be delivered to the customer must be in the form, format, and medium agreed to with the
customer. For information not to be delivered to the customer, the software manager selects the
appropriate form, format, and medium.

Release. A build that is delivered to the customer. (See build.)

97 NASA-GB-00 1-96

Requirement. A characteristic that a system or software CI must possess in order to be
acceptable to the customer.

Reused code. Code that has undergone no more than 25 percent change; that is, converted code
and transported code. (See converted unit, transported unit.)

Software configuration item (CI). An aggregation of software that satisfies an end use function
and is designated for separate configuration management by the customer or the maintenance
team. Software CIS are selected on the basis of tradeoffs among software function, size, host or
target computers, developer, support concept, plans for reuse, criticality, interface considerations,
need to be separately documented and controlled, and other factors.

Software engineering. A set of activities that results in software products. Software engineering
includes new development, modification, reuse, reengineering, maintenance, or any other
activities that result in software products.

Software engineering environment. The facilities, hardware, software, firmware, procedures,
and documentation needed to perform software engineering. Elements may include but are not
limited to CASE tools, compilers, assemblers, linkers, loaders, operating systems, debuggers,
simulators, emulators, documentation tools, and database management systems.

Software engineering process. An organized set of activities performed to translate user needs
into software products.

Software life cycle. “The period of time that begins when a software product is conceived and
ends when the software is no longer available for use.” (Reference 9) A life cycle is typically
divided into life-cycle phases. (See life-cycle phase.)

Software process. (See software engineeringprocess.)

Software product. Software or associated information created, modified, or incorporated to
satisfy the software requirements. Examples include plans, requirements, design, code, databases,
test information, and manuals.

Software product evaluation. Activities performed by the software team to ensure that in-
process and final software products meet criteria established for those products. (Contrast with
software quality assurance.)

Software project. An undertaking requiring a concerted effort, which is focused on developing
or maintaining a specific software product. Typically a software project has its own funding, cost
accounting, and delivery schedule. That is, the project is the work to be done and the personnel
assigned to perform the work; it is not the same as the product (for example, system) that they are
to produce.

Software quality assurance (SQA). Activities performed by independent QA personnel to
(1) ensure that each activity described in the software plan is performed in accordance with the
software plan, and (2)ensure that each software product required by the organization or by
software requirements exists and has undergone software product evaluations, testing, and
corrective action as required. (Contrast with software product evaluation.)

Software system. A system consisting solely of software and possibly the computer equipment
on which the software operates.

NASA-GB-00 1-96 98

Software team. The group that engineers software products (including new development,
modification, reuse, reengineering, maintenance, or any other activity that results in software
products).

Software test environment. The facilities, hardware, software, firmware, procedures, and
documentation needed to perform qualification, and possibly other, testing of software. Elements
may include but are not limited to simulators, code analyzers, test plan generators, and path
analyzers, and may also include elements used in the software engineering environment.

Software transition. The set of activities that enables responsibility for software engineering to
pass from one organization, usually the organization that performs initial software development,
to another, usually the organization that will perform sustaining engineering.

Software unit. Smallest physical element of software processed by source code translators,
compilers, and assemblers.

Standard. Written criteria used to develop and evaluate a product or to provide and evaluate a
service. (Contrast with policy, procedure.)

Sustaining engineering. Maintenance and enhancement of an operational product. (See
maintenance, enhancement.)

System. Operational entity composed of a set of interrelated and cohesive configuration items
(CIS). (See configuration item (Cr).)

Technology change management. “... [Ildentifling, selecting, and evaluating new technologies,
and incorporating effective technologies into the organization. The objective is to improve
software quality, increase productivity, and decrease cycle time for product engineering.”
(Reference 22)

Technology infusion. (Used synonymously with technology transfer; see technology transfer.)

Technology management. (See technology change management.)

Technology transfer. The successful importing or exporting of technology from lab to practice
or from practice to practice.

Technology utilization. The application and integration of appropriate technologies in software
efforts.

Timebox. A subdivision of a release created to achieve a unit of production that is manageable in
size, complexity, staffing, and duration. It is a planning construct that controls functionality
delivered by fixing resources and time.

Transported unit. Existing unit that is used verbatim (except for possible changes to the
development history for traceability). Its origin is usually external to the project. (Contrast with
new unit, adapted unit, converted unit.)

Unit. (See software unit.)

Validation. “The process of evaluating software during or at the end of the software
development process to determine whether it satisfies specified requirements.” (Reference 9)
(Contrast with verification.)

99 NASA-GB-00 1-96

Verification. “The process of evaluating software to determine whether the products of a given
development phase [or activity] satisfj the conditions imposed at the start of that phase [or
activity] .” (Reference 9) (Contrast with validation.)

Walkthrough. Detailed technical presentation of a limited aspect or portion of a product. These
presentations are usually made by the product’s developer. (Contrast with inspection.)

NASA-GB-00 1-96 100

Appendix B. Building for Reuse

euse can apply
standards, and R, 'ndicated that

I to people, code, processes, requirements, and design, as well as to plans,
test scripts. Although a recent study of NASA software (Reference 1)

most reuse at the Agency focuses solely on code, reusing any of these
resources in the development of a new system is appropriate when the result will be improved
reliability, productivity, and maintainability without a negative impact on performance or
requirements satisfaction. Planning for reuse maximizes its benefits; therefore, design software
projects for reuse from the outset. During the requirements definition and analysis and design
phases, for example, developers need to identifj potentially reusable architectures, designs, code,
and approaches. To facilitate this process, provide developers with the structure and tools that
will assist them in finding and reusing existing components and architectures rather than
developing new software from scratch. Several activities can be performed throughout the life
cycle to enable reuse:

Perform domain analysis by examining the application domain to identifj common
requirements and functions. The result is a standard, general architecture or model
that incorporates the common functions of a specific applications area and can be
tailored to accommodate differences among individual projects.
Domain analysis enables requirements generalization, which involves preparing
requirements and specifications so that they cover a selected family of projects or
missions.
During the design phase, explicitly design for reuse by providing modularity, standard
interfaces, and parameterization.
Place reusable source code in a reuse library, along with the associated requirements,
specifications, design documentation, and test data. Such a library should also contain
a search facility that enables varied access to the software (for example, by keyword
or by name).
A final activity that enables reuse on future projects involves the application of reuse
preservation techniques during the maintenance and operations phase. The
maintenance team should avoid making quick fixes, which can negatively affect the
reusability of the system. Rather, they should apply many of the same design practices
that promote reuse during software development. Alternatively, a separate
maintenance team might be established to maintain only the software in a reusable
software library. The team would notifj projects that incorporate software from the
library of any changes to that software.

Systems employing a high percentage of reused software typically still undergo each phase of the
full development life cycle, but certain reviews and documents may be consolidated and phase
schedules collapsed or overlapped (see Figure Appendix B. -1). Reusing design, documentation,
and code written for a previous project (and perhaps adapting it to some degree for use in the
system to be developed) requires less effort than creating entirely new products.

101 NASA-GB-00 1-96

Reuse Production

cantext
Existing Systems A"alySK

Reuse Preservation

Test

Application
Engineering

NASA-GB-00 1-96

Figure Appendix B. -1. High-Reuse Life-Cycle Model

102

Appendix C. COTS, GOTS, Reused, and Other NDI
Software Products

his appendix provides
this guidebook when T products .

guidance to the software manager for satisfying the requirements of
applied to incorporating COTS, GOTS, reused, and other NDI

Appendix C. .I COTS Software Products

Using COTS products involves cultural implications. For example, in making a decision to
incorporate COTS software, stakeholders must first be willing to accept the capabilities it
provides. Although it is possible to negotiate with a vendor to obtain and modi@ the source code,
in so doing vendor support will be lost, and the system will be inconsistent with future product
releases.

When considering the use of a COTS product, conduct the following activities during the
activities indicated:

Prototype during requirements definition and analysis to evaluate the product’s
capabilities and performance. Whereas prototyping typically is conducted to clarify
requirements or define a user interface, here it is performed to assess whether the
product meets already defined functionality and performance requirements. Prototype
to analyze the performance of the product, to assess its capabilities in relation to the
requirements, and to evaluate its ease of use. Conduct this activity as early as possible
in the life cycle, because the resulting decision on whether to use a COTS product
may affect the overall system architecture. Defining the system architecture thus
becomes an iterative step that evolves based on the results of the prototyping efforts,
because only a certain requirement or set of requirements may be satisfied by COTS
capabilities.
As soon as prototyping results indicate that use of a COTS product is appropriate,
plan for its interfaces to other COTS products or to the rest of the system. The
input/output requirements of the COTS product must be carefully and completely
defined and understood, so that its interfaces to other components, custom as well as
COTS, can be created correctly. At this point, assess the following:
- The effort required to develop the interface software versus the effort required to

custom develop all the code
- The maintainability of the COTS software
- The reliability of the COTS software
- The quality and reliability of vendor support (which will be crucial to successful

implementation)

103 NASA-GB-00 1-96

During design, address the connections to COTS products in the same way as other system
interfaces. Because no design products exist for COTS software, devise artifacts that provide the
traceability from COTS products to requirements.

During implementation, no code will be written for the COTS products themselves; however,
testing becomes an issue because a COTS product cannot be tested at the unit level (that is, as in
unit testing of custom software). The test plan must thus focus on the interfaces to COTS
products. Apply additional rigor in analyzing the test output. Do not assume that less testing
effort will be required for a COTS product; rather, the effort typically applied at the unit and
module levels will simply be applied to testing at a higher level for COTS interfaces. If test
results indicate that a COTS portion of the system is not performing as required, obtain vendor
support in troubleshooting and correcting the problem.

Throughout the development cycle, reassess the selection of a COTS product when requirements
changes affect a part of the architecture that is satisfied by that product.

Continually stay abreast of and reassess new versions of COTS products. Conduct additional
prototyping to evaluate their use and enable the project to take advantage of new capabilities or
to recognize possible changes in system architecture. However, at some point in the life cycle, it
will be necessary to finalize the version selection and proceed with development, regardless of
new capabilities that may become available. If using a multi-release approach, allow flexibility in
the design to facilitate the upgrade of COTS products assigned to later releases.

During operations, weigh the need for capabilities provided by new versions of the COTS
software against a possible lack of vendor support for older versions. For operational systems
with multi-site installations, apply rigorous configuration management to ensure version control.

Managing a project that comprises predominantly COTS products is similar to managing a
custom-development project. All of the same good management practices apply here as well.
However, package vendors are a source of risk that needs special attention. When a project
selects a package to be part of a system, it is buying a long-term relationship with a vendor.
Understanding a vendor's financial stability, track record, and long-term strategy can be as
important as understanding the vendor's product. Not only must the project develop a partnership
with its vendors, but it must also develop a partnership with the contracting and procurement side
of its own organization. Software project managers must acquire a level of business
understanding well beyond that needed in conventional development to successfully manage the
project.

This life-cycle concept requires the formation of a well-integrated team consisting of end-users,
domain experts, software engineers, independent testers, a system administrator, and a
procurement official, all coordinated by a project leader. The team roles must remain intact for
the entire system life cycle, and team members must be empowered to make decisions as to
which system requirements are critical. Many of the traditional roles change slightly or require
different skills. In addition, the project team includes two new roles, the system administrator and
a procurement official, who play significant roles in comparison to the minimal support needed
in these areas on traditional software development projects. A capable and interested
procurement official and systems administrator will be great assets to the project. If possible,
arrangements should be made to have a single procurement official and a system administrator

NASA-GB-00 1-96 104

assigned to the project. Every effort should be made to make them aware of project needs and to
welcome them as members of the team.

The primary project roles are as follows:

End-User. The end-users are the people who will be using the system operationally. They have a
clear understanding of the requirements and the operational environment and are empowered to
negotiate requirements changes and represent the end-user organization.

Domain expert. Domain experts have extensive experience in the problem domain and are aware
of existing packages that are available within the domain. They have experience with, or are at
least aware of, other package-based systems within the domain from which architectures can be
reused.

Software engineer. Software engineers or developers are responsible for developing glueware
and integrating the packages. They are responsible for engineering a solution that meets the
customer’s and end-users’ quality expectations. It is best if the software engineers have some
experience with COTS integration or have specific experience with the packages being used.

Independent tester. Independent testers are responsible for verifjing that the system meets its
requirements. Experience with the application domain, incremental testing, and black-box testing
is helpful.

Procurement o f f e r . Procurement officers are responsible for obtaining demonstration copies for
evaluation; purchasing selected products and negotiating for extensions of demonstration copies
until official receipt of product; monitoring and extending license expiration dates. They are
responsible for keeping the project point-of-contact informed of expected product arrival dates
and the terms of the contracts.

System administrator. System administrators are responsible for installing COTS products as
they are received and setting up accounts as they are needed. They can also help troubleshoot
problems with hardware/package compatibility. It is critical that a system administrator be
available to provide services immediately upon request, so it is best if one is dedicated to the
project.

Appendix C. .2 Evaluating COTS, GOTS, Reused, and Other NDI
Software Products

The software manager specifies in the software plan the criteria for evaluating COTS, GOTS,
reused, and other NDI software products for use in fulfilling software requirements. General
criteria are the software product’s ability to meet specified requirements and cost-effectiveness
over the life of the system. Examples of specific criteria include but are not limited to the
following:

Testability

Ability to provide required capabilities and meet required constraints
Ability to provide required safety, security, and privacy
Reliability and maturity, as evidenced by an established track record

Interoperability with other system and system-external elements

105 NASA-GB-00 1-96

Fielding issues, including:
- Restrictions on copying and distributing the software or documentation
- License or other fees applicable to each copy

- Likelihood the software product will need to be changed
- Feasibility of accomplishing that change
- Availability and quality of documentation and source files
- Likelihood that the supplier will continue to support the current version
- Impact on the system if the current version is not supported
- The customer’s data rights to the software product

Warranties available

Maintainability

Short- and long-term cost impacts of using the software product
Technical, cost, and schedule risks and tradeoffs in using the software product

Appendix C. .3 Guidelines for Performing Required Activities
Involving COTS, GOTS, Reused, and Other NDI Software
Prod ucts

The following guidelines are provided to help interpret and satisfj the requirements to perform
life-cycle activities:

Any software product required by this document may be a COTS, GOTS, reused, or
other NDI software product as long as it meets the criteria established in the software
plan. The software product may be used as is or modified.
When COTS, GOTS, reused, or other NDI software has been selected to be
incorporated into the delivered software product, some requirements in this document
must have special interpretation. Table Appendix C. -1 provides this interpretation.
Key issues are whether the software will be modified, whether the unmodified
software constitutes an entire software CI or only one or more software units, and
whether the unmodified software has a positive performance record. The table is
presented in a conditional manner: If an activity in the left column is required for a
given type of software, the table tells how to interpret the activity for COTS, GOTS,
reused, or other NDI software of that type.

NASA-GB-00 1-96 106

Table Appendix C. -1. Guidelines for Using COTS, GOTS, Reused, and Other NDI Software
Products

(1 of 2)

No requirement:
software CI is
already tested
and proven.

Software project
planning

Software CI Specify the project-specific
requirements
definition and
analysis

Include the activities in this table in project plans.

Consider the component's capabilities and characteristics in
specifying the requirements for the software CI of which it is a part. requirements the software CI must

meet; verify through records or retest
that the software CI can meet them.

Perform this
testing.

Software CI-wide
design

No requirement: the software CI-wide
design decisions have already been
made.

Consider the component's capabilities and characteristics in
designing software CI behavior and making other software CI-wide
design decisions.

Software CI
architectural
design

No requirement: the software Cl's
architecture is already defined.

Include the component in the software CI architecture and allocate
software CI requirements to it.

Software CI No requirement: the software Cl's No requirement: the component is Modify the component's
detailed design detailed design is already defined. already designed. design as needed.

Software
implementation

No requirement: the software for the
software Cl's components is already
implemented.

No requirement: the software for the
component is already implemented.

Modify the software for
the component.

Unit testing

Integration and
testing

No requirement:
the software Cl's
units are already
tested.

No requirement:
the software Cl's
components are
already
integrated.

Perform
selectively if in
question and
units are
accessible.

Perform
selectively if in
question and
components are
accessible.

No requirement:
the unit is
already tested.

Perform except
where integration
is already tested
or proven.

Perform this testing.

Perform this testing

Software CI
qualification
testing

Include the component in software CI qualification testing.

107 NASA-GB-00 1-96

Table Appendix C. -1. Guidelines for Using COTS, GOTS, Reused, and Other NDI Software
Products

(2 of 2)

Preparation for
Software Delivery

Include the software for the software CI or component in the executable software; prepare source files for
the software CI or component, if available; include version descriptions; handle any license issues;
prepare or provide as-built design descriptions for software whose design is known; cover use of the
software CI or component, as appropriate, through existing, new, or revised user or operator manuals;
install the software CI or component at the support site; demonstrate regenerability if source is available;
include the training offered.

Software project
close-out software. I Apply to activities performed and software products prepared, modified, or used in incorporating this

Software product I V&V
Apply to software products prepared or modified in incorporating this software; for software products used
unchanged, apply unless a positive performance record or evidence of past evaluations indicates that
such an V&V would be duplicative.

Software
configuration
management

Apply to all software products prepared, modified, or used in incorporating this software.

Software quality
assurance software.

Apply to all activities performed and all software products prepared, modified, or used in incorporating this

Milestone reviews

Software process
improvement

System
requirements
analysis

Cover the software products prepared or modified in incorporating this software; explicitly discuss COTS,
GOTS, reused, and other NDI products.

Apply to all activities performed in engineering this software.

Consider software's capabilities in defining the system and operations concept and system requirements.

Use test or
performance
records to
confirm ability to
meet needs.

Test to confirm
ability to meet
needs.

Use test or
performance
records to
confirm ability to
meet needs.

Test to confirm
ability to meet
needs.

Use tests or records to
determine potential to
meet needs.

System-wide
design system-wide design decisions.

Consider the software's capabilities and characteristics in designing system behavior and in making other

System
architectural
design

Include the software CI in the system
architecture; allocate system
requirements to it.

Consider the component's capabilities and characteristics in
designating software CIS and allocating system requirements to
them.

Software CI and
hardware CI
integration and
testing

System
qualification
testing

where software CI in
integration is software CI and

proven. integration and

Include the software CI in system
qualification testing.

Include the component in software CI and hardware CI integration
and testing.

Include the component in system qualification testing

NASA-GB-00 1-96 108

Appendix D. System-Level Considerations

hen the software CI is part of a larger hardware-software system for which the
organization has system-level responsibilities, a number of additional considerations W must be taken into account. In the following paragraphs regarding system-level

activities, if the software covered by this document is part of a hardware-software system for
which this document covers only the software portion, participate means take part in, as
described in the software plan. If the software (and the computers on which it executes) is
considered to constitute a system, participate means be responsible for.

Appendix D. .I System Requirements Analysis

The software requirements analysts participate in system requirements analysis in accordance
with the requirements discussed in the subsections that follow.

Analysis of User Input

The software requirements analysts participate in analyzing user input provided by the customer
to gain an understanding of user needs. This input may take the form of need statements, surveys,
problem reports and change requests, feedback on prototypes, interviews, or other user input or
feedback. This input is used to formulate the system and operations concept and the system
requirements.

System and Operations Concept

The software requirements analysts participate in defining and recording the operational concept
for the system. The result includes all applicable items in the system and operations concept
documentation standard, including the preparation of any required operational scenarios.

System Requirements

The software requirements analysts participate in defining and recording the requirements to be
met by the system and the methods to be used to ensure that each requirement is met. The result
includes all applicable items in the system requirements specification (SRS) documentation
standard.

If a system consists of subsystems (or CIS), the activity in this subsection is intended to be
performed iteratively with the system design activities to define system requirements, design the
system and identify its subsystems, define the requirements for and interfaces among those
subsystems, design the subsystems, identify their components, and so on.

Appendix D. .2 System Design

The software requirements analysts and software design architects participate in system design in
accordance with the requirements discussed in the subsections that follow.

109 NASA-GB-00 1-96

System-Wide Design Decisions

The software requirements analysts and software design architects participate in defining and
recording system-wide design decisions (that is, decisions about the system’s behavioral design
and other decisions that affect the selection and design of system components). The result
includes all applicable items in the system-wide design section of the system design specification
(SDS) documentation standard.

Design decisions remain at the discretion of the software requirements analysts and software
design architects unless formally converted to requirements. The software team is responsible for
fulfilling all requirements and demonstrating this fulfillment through qualification testing.
Design decisions act as software team-internal “requirements,” to be implemented, imposed on
contractors (if applicable), and confirmed by software team-internal testing; but their fulfillment
need not be demonstrated to the customer.

System Architectural Design

The software requirements analysts and software design architects participate in defining and
recording the architectural design of the system (identifjing the components of the system, their
interfaces, and a concept of execution among them) and the traceability between the system
components and system requirements. The result includes all applicable items in the architectural
design and traceability sections of the SDS documentation standard.

Appendix D. .3 Software CI and Hardware CI Integration and Testing

Software CI and hardware CI integration and testing means integrating software CIS with
interfacing hardware CIS and software CIS, testing the resulting groupings to determine whether
they work together as intended, and continuing this process until all software CIS and hardware
CIS in the system are integrated and tested. The software qualification testers participate in
developing and recording test plans (in terms of inputs, expected results, and V&V criteria), test
procedures, and test data for conducting software CI and hardware CI integration and testing. The
test plans cover all aspects of the system-wide and system architectural design. The software
qualification testers participate in software CI and hardware CI integration and testing in
accordance with the software CI and hardware CI integration test plans and procedures. The
software team participates in analyzing the results of software CI and hardware CI integration
and testing. Software-related analysis and test results are recorded in appropriate product V&V
records files. The software team makes necessary revisions to the software, participates in
retesting, and updates other software products as needed, based on the results of software CI and
hardware CI integration and testing.

Appendix D. .4 System Qualification Testing

System qualification testing is performed to demonstrate (often to the customer) that system
requirements have been met. It covers the SRS. This testing contrasts with software team-internal
system testing, performed as the final stage of software CI and hardware CI integration and
testing.

NASA-GB-00 1-96 110

The persons responsible for fulfilling the requirements in this section are not the persons who
performed detailed design or implementation of software in the system, although those persons
may participate, for example, by contributing test plans that rely on knowledge of the system’s
internal implementation.

The software qualification testers participate in developing and recording the test preparations,
test plans, and test procedures to be used for system qualification testing and the traceability
between the test plans and the system requirements. For software systems, the results include all
applicable items in the software CI qualification test plan documentation standard. The software
qualification testers participate in preparing the test data needed to carry out the test plans and in
providing the customer advance notice of the time and location of system qualification testing.
They participate in system qualification testing in accordance with the system test plans and
procedures. The software team participates in analyzing and recording the results of system
qualification testing. For software systems, the result includes all applicable items in the software
CI qualification test report documentation standard. The software team makes necessary
revisions to the software, provides the customer advance notice of retesting, participates in
retesting, and updates other software products as needed, based on the results of system
qualification testing.

111 NASA-GB-00 1-96

Abbreviations and Acronyms

AT

ATRR

BDR

BQT
CASE

CDR

CI

CM

COCOMO

COTS

CCB

DFD

DR

FCA

FQT
GOTS

GSFC

HQ
IDR

IRM

IV&V

JAD

JPL

MSFC

NASA

NDI

NMI

O&M

ORR

acceptance test or testing

acceptance test readiness review

build design review

build qualification testing

computer-aided software engineering

critical design review

configuration item

configuration management

Constructive Cost Model

commercial-o ff-the-shelf

configuration control board

data flow diagram

discrepancy report

functional configuration audit

formal qualification testing

government-o ff-the-shelf

Goddard Space Flight Center

headquarters

internal DR

Information Resources Management

independent validation and verification

joint application development

Jet Propulsion Laboratory

Marshall Space Flight Center

National Aeronautics and Space Administration

non-developed item

NASA Management Instruction

operations and maintenance

operational readiness review

113 NASA-GB-00 1-96

OSMA

PAL

PCA

PDR

QA
QTRR

RCR

RDR

RQTRR

RRR

SCM

SCR

SDR

SDS

SEI

SEL

SPR

SQA
SRR

SRS

SSR

STR

SWDS

SWG

SWRS

TBD

TPM

V&V

Office of Safety and Mission Assurance

process asset library

physical configuration audit

preliminary design review

quality assurance

qualification test readiness review

release contents review

release design review

release qualification test readiness review

release requirements review

software configuration management

system concept review

system design review

system design specification

Software Engineering Institute

Software Engineering Laboratory

system or software problem report

software quality assurance

system requirements review

system requirements specification

software specification review

system or software trouble report

software design specification

Software Working Group

software requirements specification

to be determined

Technical Performance Measurement

validation and verification (also validate and verify)

NASA-GB-00 1-96 114

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

Profie of Software at the National Aeronautics and Space Administration (NASA),
Software Engineering Program, NASA-RPT-004-95, March 1995.

Jeletic, K, R. Pajerski, C. Brown, Software Process Improvement Guidebook, Software
Engineering Program, NASA-GB-00 1-95, January 1996.

NASA Software Strategic Plan, NASA Software Program, Fairmont, West Virginia, July
1995.

MIL-STD-498, Software Development and Documentation, Department of Defense,
December 5 , 1994.

Bassman, M., F. McGarry, R. Pajerski, Software Measurement Guidebook, Software
Engineering Program, NASA-GB-001-94, August 1995. Also published as SEL-94-102,
Software Engineering Laboratory, NASA/GSFC, June 1995.

Reusable Software Management Plan (SMP) and On-line Help Tool, Software Assurance
Technology Center, NASA/GSFC, http://satc.gsfc.nasa.gov/Documents/smp/
smppage . html .
Landis, L., F. McGarry, S. Waligora, et al., Manager’s Handbook for Software
Development (Revision I), SEL-84- 10 1, Software Engineering Laboratory, NASA/GSFC,
November 1 9 9 0, http : // fdd . g s fc . nasa. gov/mgr-hand/mnghnbk. html .
Alberts, C. J., et al., Continuous Risk Management Guidebook (DRAFT version 0.3),
Software Engineering Institute, Camegie Mellon University, January 1996.

ANSVIEEE-STD-6 10.12- 1990, “IEEE Standard Glossary of Software Engineering

Landis, L., S. Waligora, F. McGarry, et al., Recommended Approach to Software
Development (Revision 3), SEL-8 1-305, Software Engineering Laboratory, NASA/GSFC,
June 1992.

Boehm, B., “A Spiral Model of Software Development and Enhancement,” IEEE
Computer, May 1988.

Waligora,. S., SEL Package-Based System Development Process, Software Engineering
Laboratory, NASA/GSFC, February 1996, http://fdd.gsfc.nasa.gov/cotsweb.pdf.

NASA Software Formal Inspections Guidebook, NASA-GB-A302, August 1993,
accessible from http://www.ivv.nasa.gov/S WG/.

Weller, E., “Lessons from Three Years of Inspection Data,” IEEE Software, September
1993.

Currit, P. A., M. Dyer, and H. D. Mills, “CertifLing the Reliability of software,” IEEE
Transactions on Software Engineering, Vol. SE- 12, No. 1, January 1986, pp. 3-1 1.

115 NASA-GB-00 1-96

http://satc.gsfc.nasa.gov/Documents/smp
http://fdd.gsfc.nasa.gov/cotsweb.pdf
http://www.ivv.nasa.gov/S

16. Basili, V, and S. Green, “Software Process Evolution at the SEL,” IEEE Software, Vol.

17. Software Engineering Evaluation System Technical Assessment Procedures and
Workshops, NASA Headquarters, Office of Safety and Mission Assurance, U.S. Army
Missile Command, Redstone Arsenal, Alabama, 1994.

NASA Management Instruction 7120.4, “Management of Major System Programs and

11, NO. 4, July 1994, pp. 58-66.

18.

19. NASA Handbook 7120.5, “Management of Major System Programs and Projects,”
November 1993.

Boehm, B. Software Engineering Economics, Prentice-Hall, Inc., Englewood Cliffs, NJ,
1981.

Condon, S., M. Regardie, M. Stark, and S. Waligora, Cost and Schedule Estimation
Report, SEL-93-002, NASNGSFC, November 1993.

Paulk, M, et al., Key Practices of the Capability Maturity Model, Version 1.1, Software
Engineering Institute, Camegie Mellon University, CMU/SEI-93-TR-25, February 1993.

20.

21.

22.

NASA-GB-00 1-96 116

	Foreword
	1 Introduction
	1.1 Background
	1.2 Purpose
	1.3 Scope
	1.4 Overview
	1.4.1 Organization
	1.4.2 Terminology
	1.4.3 Notation

	2 Software Engineering Process Requirements and Infrastructure
	2.1 General Requirements
	2.2 Specific Required Activities and Products
	2.2.1 Management Activities
	2.2.2 Technical Activities
	2.2.3 Software Process Improvement Activities
	2.2.4 System-Level Considerations

	2.3 Software Process Responsibilities
	2.3.1 Level 1: NASA Headquarters IV&V Facility and Software Working Group
	2.3.2 Level 2: Center and Intra-Center Elements
	2.3.3 Level 3: Branches and Software Projects

	2.4 Process Assets

	3 The Software Project™s Process
	3.1 The Five-Step Project Process
	3.2 Documenting the Project™s Process-The Software Plan

	4 Beginning to Plan the Project: Understanding the Scope of Work
	4.1 Ascertaining Customer Requirements and Constraints
	4.2 Ascertaining Customer Goals and Objectives
	4.3 Understanding Management™s Risk Tolerance
	4.4 Understanding Products to be Delivered and Their Characteristics
	4.4.1 Documentation
	4.4.2 Software Product Releases
	4.4.3 Milestone Reviews

	5 Defining the Technical Approach
	5.1 Selecting an Appropriate Life-Cycle Model
	5.1.1 Waterfall Development Life-Cycle Model
	5.1.2 Incremental Development Life-Cycle Model
	5.1.3 Evolutionary Development Life-Cycle Model
	5.1.4 Package-Based Development Life-Cycle Model
	5.1.5 Legacy System Maintenance Life-Cycle Model

	5.2 Selecting Appropriate Activities Methods and Products
	5.2.1 Software CI Requirements Definition and Analysis
	5.2.2 Software CI Design
	5.2.3 Software CI Implementation and Testing
	5.2.4 Software CI Qualification Testing
	5.2.5 Preparing for Software Delivery
	5.2.6 Software Product Validation and Verification
	5.2.7 Software Configuration Management
	5.2.8 Software Quality Assurance
	5.2.9 Milestone Reviews

	6 Finishing the Software Plan-Defining the Management Approach
	6.1 Establishing the Software Project™s Organizational Structure
	6.2 Estimating and Scheduling the Work
	6.3 Planning Other Activities
	6.4 Reviewing the Software Plan

	7 Running the Project
	7.1 Managing the Project
	7.1.1 Preparing the Software Team
	7.1.2 Monitoring and Controlling the Project
	7.1.3 Communicating with Stakeholders
	7.1.4 Maintaining the Software Plan
	7.1.5 Keeping Project Records

	7.2 Closing Out the Project

	Appendix A Glossary
	Appendix B Building for Reuse
	Appendix C COTS GOTS Reused and Other NDI Software Products
	C 1 COTS Software Products
	C.2 Evaluating COTS GOTS Reused and Other NDI Software Products
	Other NDI Software Products

	Appendix D System-Level Considerations
	D 1 System Requirements Analysis
	D.2 System Design
	D.3 Software CI and Hardware CI Integration and Testing
	D.4 System Qualification Testing

	Abbreviations and Acronyms
	References
	Figure 2.1 Required Software Process Activities
	Figure 2-2 System Life Cycle
	Figure 2-3 Software Development Context
	Figure 24 Software Maintenance or Enhancement Context
	Figure 3-1 The Five-Step Project Process
	Figure 3-2 Planning the Software Project
	Figure 3-3 Tailoring the Project™s Software Process
	Figure 5-1 Phases and Activities
	Figure 5-2 Waterfall Development Life-Cycle Model
	Figure 5-3 Incremental Development Life-Cycle Model
	Figure 54 Evolutionary Development Life-Cycle Model
	Figure 5-5 Package-Based Development Life-Cycle Model
	Figure 5-6 Legacy System Maintenance Life-Cycle Model
	Figure 5-7 Primary Software Engineering Activities
	Figure 5-8 Software Engineering Support Activities
	Figure 6-1 Typical Software Project Organization
	Figure 7-1 Running the Project
	Figure 7-2 Product Handovers
	Figure B-1 High-Reuse Life-Cycle Model
	Table 1.1 Use of Icons
	Table 2.1 Required Activities Products and Roles
	Table 2-2 Sampling of Software Products at Each Organizational Level
	Table 3-1 Mapping the Five-Step Project Process to This Guidebook
	Table 4-1 Sample Project Objectives
	Table 5-1 Defining a Life Cycle
	Table 5-2 Summary of Waterfall Development Life-Cycle Model
	Model

	Table 54 Summary of Incremental Development Life-Cycle Model
	Model

	Table 5-6 Summary of Evolutionary Development Life-Cycle Model
	Model

	Table 5-8 Summary of Package-Based Development Life-Cycle Model
	Cycle Model

	Table 5-1 0 Summary of Legacy System Maintenance Life-Cycle Model
	Model

	Table 5-1 2 Structured Requirements Analysis Method
	Table 5-1 3 Object-Oriented Requirements Analysis Method
	Table 5-14 Prototyping Technique
	Table 5-1 5 JAD Workshop Technique
	Table 5-1 6 Structured Design Method
	Table 5-1 7 Object-Oriented Design Method
	Table 5-18 Top-Down Method
	Table 5-1 9 Bottom-Up Method
	Table 5-20 Functional Path Method
	Table 5-2 1 Software Product V&V Summary
	Table 5.22 Inspection Method
	Table 5-23 Walkthrough Method
	Table 5-24 Document Review Method
	Table 5-25 Demonstration Method
	Table 5.26 Functional Testing Method
	Table 5-27 Structural or Coverage Testing Method
	Table 5-28 Statistical Testing Method
	Table 5-29 Regression Testing Method
	Table 5-30 Testing Methods vs Testing Levels
	Table 5-3 1 The Cleanroom Method
	Table 5-32 Candidate Milestone Reviews
	Table 5-33 Meetings
	Table 5-34 Presentations
	Table 5-3 5 Demonstrations
	Table 6-1 Three Levels of Estimates and Plans
	Table 6-2 Mini-Waterfall
	Table 6-3 Timeboxes
	Table 64 Required Activities and Related Measures
	Table 6-5 Process Studies
	Table 7-1 Recommended Status Reports and Meetings
	Table C-1 Guidelines for Using COTS GOTS Reused and Other NDI Software Products

